对并行计算,OPENMP,OPENMPI,MPI,进程,线程的理解

对并行计算的了解
在以前的学习过程中,对并行计算的了解限于进程、线程的同步计算。在学习并行计算技术的过程中,了解到了很多新东西,新名词,在这里记录一下自己遇到了一些困惑和知识点,尤其以MPI为主,引出了一大堆新知识。
进程:
是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态概念,竟争计算机系统资源的基本单位。每一个进程都有一个自己的地址空间,即进程空间或(虚空间)。进程空间的大小 只与处理机的位数有关,进程至少有5种基本状态,它们是:初始态,执行态,等待状态,就绪状态,终止状态。
线程:
在网络或多用户环境下,一个服务器通常需要接收大量且不确定数量用户的并发请求,为每一个请求都创建一个进程显然是行不通的,——无论是从系统资源开销方面或是响应用户请求的效率方面来看。因此,操作系统中线程的概念便被引进了。线程,是进程的一部分,一个没有线程的进程可以被看作是单线程的。线程有时又被称为轻权进程或轻量级进程,也是CPU调度的一个基本单位。
二者大致的区别:

  1. 线程的执行特性。
    线程只有3个基本状态:就绪,执行,阻塞。
    线程存在5种基本操作来切换线程的状态:派生,阻塞,激活,调度,结束。
  2. 进程通信。
    单机系统中进程通信有 4 种形式:主从式,会话式,消息或邮箱机制,共享存储区方式。
    主从式典型例子:终端控制进程和终端进程。
    会话式典型例子:用户进程与磁盘管理进程之间的通信。
    进程的执行过程是线状的,尽管中间会发生中断或暂停,但该进程所拥有的资源只为该线状执行过程服务。一旦发生进程上下文切换,这些资源都是要被保护起来的。这是进程宏观上的执行过程。而进程又可有单线程进程与多线程进程两种。我们知道,进程有 一个进程控制块PCB,相关程序段 和 该程序段对其进行操作的数据结构集 这三部分,单线程进程的执行过程在宏观上是线性的,微观上也只有单一的执行过程;而多线程进程在宏观上的执行过程同样为线性的,但微观上却可以有多个执行操作(线程),如不同代码片段以及相关的数据结构集。线程的改变只代表了 CPU 执行过程的改变,而没有发生进程所拥有的资源变化。出了CPU之外,计算机内的软硬件资源的分配与线程无关,线程只能共享它所属进程的资源。与进程控制表和PCB相似,每个线程也有自己的线程控制表TCB,而这个TCB中所保存的线程状态信息则要比PCB表少得多,这些信息主要是相关指针用堆栈(系统栈和用户栈),寄存器中的状态数据。进程拥有一个完整的虚拟地址空间,不依赖于线程而独立存在;反之,线程是进程的一部分,没有自己的地址空间,与进程内的其他线程一起共享分配给该进程的所有资源。
    线程可以有效地提高系统的执行效率,但并不是在所有计算机系统中都是适用的,如某些很少做进程调度和切换的实时系统。使用线程的好处是有多个任务需要处理机处理时,减少处理机的切换时间;而且,线程的创建和结束所需要的系统开销也比进程的创建和结束要小得多。最适用使用线程的系统是多处理机系统和网络系统或分布式系统。
    MPI:
    在程序中,不同的进程需要相互的数据交换,特别是在科学计算中,需要大规模的计算与数据交换,集群可以很好解决单节点计算力不足的问题,但在集群中大规模的数据交换是很耗费时间的,因此需要一种在多节点的情况下能快速进行数据交流的标准,这就是MPI。
    MPI(Message Passing Interface),由其字面意思也可些许看出,是一个信息传递接口。MPI是一个跨语言的通讯协议,用于编写并行计算机。支持点对点和广播。MPI是一个信息传递应用程序接口,包括协议和和语义说明,他们指明其如何在各种实现中发挥其特性。MPI的目标是高性能,大规模性,和可移植性。MPI在今天仍为高性能计算的主要模型。与OpenMP并行程序不同,MPI是一种基于信息传递的并行编程技术。消息传递接口是一种编程接口标准,而不是一种具体的编程语言。简而言之,MPI标准定义了一组具有可移植性的编程接口。
    进程线程MPI通信
    在了解并行计算技术的过程当中,发现通信十分重要,但又不知道MPI和之前学的管道,队列等通信方式的区别,因此,在这里做个总结。
    首先先介绍常见的进程,线程之间的通信方式:
    (1)进程间的通信方式:六大方式
    管道( pipe ):
    管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。
    有名管道 (namedpipe) :
    有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。
    信号量(semophore ) :
    信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。
    消息队列( messagequeue ) :
    消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。
    信号 (sinal ) :
    信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。
    共享内存(shared memory ) :
    共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。
    套接字(socket ) :
    套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同设备及其间的进程通信。
    (2)线程间的通信方式
    锁机制:包括互斥锁、条件变量、读写锁
    互斥锁提供了以排他方式防止数据结构被并发修改的方法。
    读写锁允许多个线程同时读共享数据,而对写操作是互斥的。
    条件变量可以以原子的方式阻塞进程,直到某个特定条件为真为止。对条件的测试是在互斥锁的保护下进行的。条件变量始终与互斥锁一起使用。
    信号量机制(Semaphore):包括无名线程信号量和命名线程信号量
    信号机制(Signal):类似进程间的信号处理
    线程间的通信目的主要是用于线程同步,所以线程没有像进程通信中的用于数据交换的通信机制。
    实际上只有进程间需要通信,同一进程的线程共享地址空间,没有通信的必要,但要做好同步/互斥,保护共享的全局变量。
    而进程间通信无论是信号,管道pipe还是共享内存都是由操作系统保证的,是系统调用。
    (3)MPI通信与上述区别
    在设计并行计算机时,最直接的方式就是多个计算单元共享一个内存,即如下图所示。共享内存的编程在数据交换和访问上有较大的优势,程序编写起来更加简单。但在扩展性上有较大的瓶颈。另一种方式为,分布式内存。即每个计算单元有单独的内存,计算单元之间的数据访问通过互联网络去传输。这一架构在可移植性和扩展上会强很多,但消息的传递会成为程序设计中的难点。将这两点结合,即是分布式共享内存并行计算机的架构,也是当今最常用的体系结构。
    在这里插入图片描述

上文提到进程之间的通信方式大多数是在同一主机之上的,而MPI是用于集群中的节点与节点的通信,个人理解MPI就是上文当中的的socket通信,可以理解为是一种通信库实现,利用它可以容易构造灵活的通信拓扑,例如点对点通信,一对多通信,多对多通信。例如,实现点对点通信底层可以走tcp,也可以走rdma,rdma可以走roce也可以走ib链路,所以根本上它是区分于tcp rdma之上的一种通信原语设计。
MPI可能会使用套接字。但是也存在与使用直接分布式共享存储器的SAN (系统区域网络)一起使用的MPI实现。当然,如果有硬件的话。因此,MPI允许我们在未来使用这些资源。在这种情况下,可以获得巨大的性能改进。因此,如果正在编写可以移植到高端集群的代码,那么使用MPI是一个非常好的主意。
总结:大多数MPI实现都使用套接字进行基于TCP的通信。与直接使用套接字的本地应用程序相比,任何给定的MPI实现都有可能得到更好的优化,并提供更快的消息传递速度。
MPI的并行方式和之前理解的多线程多进程的关系
MPI(MPI是一个标准,有不同的具体实现,比如MPICH等)是多主机联网协作进行并行计算的工具,当然也可以用于单主机上多核/多CPU的并行计算,不过效率低。它能协调多台主机间的并行计算,因此并行规模上的可伸缩性很强,能在从个人电脑到世界TOP10的超级计算机上使用。缺点是使用进程间通信的方式协调并行计算,这导致并行效率较低、内存开销大、不直观、编程麻烦。OpenMP是针对单主机上多核/多CPU并行计算而设计的工具,换句话说,OpenMP更适合单台计算机共享内存结构上的并行计算。由于使用线程间共享内存的方式协调并行计算,它在多核/多CPU结构上的效率很高、内存开销小、编程语句简洁直观,因此编程容易、编译器实现也容易(现在最新版的C、C++、Fortran编译器基本上都内置OpenMP支持)。不过OpenMP最大的缺点是只能在单台主机上工作,不能用于多台主机间的并行计算!如果要多主机联网使用OpenMP(比如在超级计算机上),那必须有额外的工具帮助,比如MPI+OpenMP混合编程。或者是将多主机虚拟成一个共享内存环境(Intel有这样的平台),但这么做效率还不如混合编程,唯一的好处是编程人员可以不必额外学习MPI编程。
这里又提到了一个新名词:OpenMP。
MPI、OPENMPI、OPENMP的异同
OpenMP比较简单,修改现有的大段代码也容易。基本上OpenMP只要在已有程序基础上根据需要加并行语句即可。而mpi有时甚至需要从基本设计思路上重写整个程序,调试也困难得多,涉及到局域网通信这一不确定的因素。不过,OpenMP虽然简单却只能用于单机多CPU/多核并行,MPI才是用于多主机超级计算机集群的强悍工具,当然复杂。所以:OpenMP使得程序员可以把更多的精力投入到并行算法本身,而非其具体实现细节。对基于数据分集的多线程程序设计,它是一个很好的选择。但是,作为高层抽象,OpenMP并不适合需要复杂的线程间同步和互斥的场合。OpenMP的另一个缺点是不能在非共享内存系统(如计算机集群)上使用。在这样的系统上,MPI使用较多。
(1)MPI=message passing interface:(再次以不同的角度介绍一下MPI)
在分布式内存(distributed-memory)之间实现信息通讯的一种 规范/标准/协议(standard)。它是一个库,不是一门语言。可以被fortran,c,c++等调用。MPI 允许静态任务调度,显示并行提供了良好的性能和移植性,用 MPI 编写的程序可直接在多核集群上运行。在集群系统中,集群的各节点之间可以采用MPI编程模型进行程序设计,每个节点都有自己的内存,可以对本地的指令和数据直接进行访问,各节点之间通过互联网络进行消息传递,这样设计具有很好的可移植性,完备的异步通信功能,较强的可扩展性等优点。MPI 模型存在一些不足,包括:程序的分解、开发和调试相对困难,而且通常要求对代码做大量的改动;通信会造成很大的开销,为了最小化延迟,通常需要大的代码粒度;细粒度的并行会引发大量的通信;动态负载平衡困难;并行化改进需要大量地修改原有的串行代码,调试难度比较大。
(2)MPICH和OpenMPI:
它们都是采用MPI标准,在并行计算中,实现节点间通信的开源软件。各自有各自的函数,指令和库。而MPICH2是MPICH的一个版本。有的计算机厂商,也会针对旗下机型特点,自主开发基于MPICH的MPI软件,从而使机器的并行计算效率得以提高。
(3)OpenMP:
在节点内(多核 SMP)执行的基于共享内存的编程模型。OpenMP是针对单主机上多核/多CPU并行计算而设计的工具,换句话说,OpenMP更适合单台计算机共享内存结构上的并行计算。由于使用线程间共享内存的方式协调并行计算,它在多核/多CPU结构上的效率很高、内存开销小、编程语句简洁直观,因此编程容易、编译器实现也容易(现在最新版的C、C++、Fortran编译器基本上都内置OpenMP支持)。不过OpenMP最大的缺点是只能在单台主机上工作,不能用于多台主机间的并行计算。
总结:OpenMP和MPI是并行编程的两个手段,对比如下:OpenMP:线程级(并行粒度);共享存储;隐式(数据分配方式);可扩展性差;MPI:进程级;分布式存储;显式;可扩展性好。OpenMP采用共享存储,意味着它只适应于SMP,DSM机器,不适合于集群。MPI虽适合于各种机器,但它的编程模型复杂:需要分析及划分应用程序问题,并将问题映射到分布式进程集合;需要解决通信延迟大和负载不平衡两个主要问题;调试MPI程序麻烦;MPI程序可靠性差,一个进程出问题,整个程序将错误;
OpenMP对应的实际上是单进程多线程的并发编程模型,可以将一个单线程的程序按for循环拆分成多线程——相当于pthread_create。对于同一个进程的多个线程来说,由于它们只是独占自己的栈内存,堆内存是共享的,因此数据交换十分地容易,直接通过共享变量就可以进行交换,编程模型非常简单易用,并且对于操作系统来说,线程的上下文切换成本也比进程低很多。然而另一方面,由于线程不能脱离进程独立存在,而一个进程不能存在于多台机器上,所以OpenMP只适用于拥有多个CPU核心的单台电脑。并且多线程编程存在临界区(Critical Section),需要你自己去加锁,解决Race Condition问题,否则的话很容易导致不可预知的后果。而MPI则是多进程的并发编程模型,相当于你自己调用fork——每一个进程的内存地址空间都是独立的,它们彼此之间几乎什么都不共享,只能通过进程间通信(IPC)来交换彼此的数据,因此编程难度明显要大很多。MPI有一个非常显著的优点,那就是对于一个分布式系统来说,进程是可以在分布式系统的每一台电脑之间转移的,因此对于拥有多台电脑的分布式系统来说,其并发性要明显好于OpenMP。下图展示了两种工具的性能对比。
在这里插入图片描述

(4)二者的结合
一个常见的集群设置使用分布式内存节点,每个节点包含几个彼此之间共享内存的插槽。这建议使用MPI在节点之间进行通信(节点间通信),使用OpenMP在节点上进行并行化(节点内通信)。在实践中,这实现了以下几点在每个节点上启动一个MPI进程(而不是每个核心一个)。这一个MPI进程然后使用OpenMP(或其他线程协议)来产生尽可能多的线程,这些线程在节点上有独立的套接字或核心。然后,OpenMP线程可以访问节点的共享内存。
另一种方法是在每个核或插槽上有一个MPI进程,通过消息传递进行通信,甚至可以看到进程之相同的共享内存。
C语言线程Pthread、OPENMP的异同
既然OpenMP是线程级别的,那与Pthread有是怎么样的关系?
首先mpi是基于分布式内存系统,而openmp和pthread基于共享内存系统;也就是说mpi之间的数据共享需要通过消息传递,因为mpi同步的程序属于不同的进程,甚至不同的主机上的不同进程。 相反由于openmp和pthread共享内存,不同线程之间的数据就无须传递,直接传送指针就行。同时mpi不同主机之间的进程协调工作需要安装mpi软件(例如mpich)来完成。
在openmp和pthread之间的区别主要在编译的方式上,openmp的编译需要添加编译器预处理指令#pragma,创建线程等后续工作要编译器来完成。而pthread就是一个库,所有的并行线程创建都需要我们自己完成,较openmp麻烦一点。
pthread全称应该是POSIX THREAD,顾名思义这个肯定是按照POSIX对线程的标准而设计的。目前我所知道的有两个版本:Linux Thread(较早)和NPTL(主流?)。pthread库是一套关于线程的API,提供“遵循”(各平台实现各异)POSIX标准的线程相关的功能。
openMP不同于pthread的地方是,它是根植于编译器的(也要包含头文件omp.h),而不是在各系统平台是做文章。它貌似更偏向于将原来串行化的程序,通过加入一些适当的编译器指令(compiler directive)变成并行执行,从而提高代码运行的速率。
总结:pthread在程序启动时创建一束线程,将工作分配到线程上。然而,这种方法需要相当多的线程指定代码,且不能保证能够随着可用处理器的数量而合理地进行扩充。OpenMP不需要指定数量,在有循环的地方加上代码,修改设置文件极客。OpenMP非常方便,因为它不会将软件锁定在事先设定的线程数量中,但是相对的查错更难也更麻烦。
C语言进程Fork、OPENMPI的异同
既然提到了两种线程级别的,那必然要提到进程级别的区别与联系了。事实上他们解决的不是同一个问题。请注意并行编程和分布式内存并行编程之间的区别。使用fork/join模型通常是为了在同一台物理机器上进行并行编程。通常不会将的工作分配给其他连接的机器(评论中的某些型号除外)。MPI用于分布式内存并行编程。并不是使用单个处理器,而是使用一组机器(甚至数十万个处理器)来解决问题。虽然这些有时被认为是一个大型逻辑机器,但它们通常由许多处理器组成。MPI函数用于简化分布式机器上这些进程之间的通信,以避免必须执行诸如在所有进程之间手动打开TCP套接字之类的操作。
因此,除非仅在一台机器上运行MPI 程序,否则没有真正的方法来比较它们的性能,而这并不是它的设计目的。所以,按理来说可以在一台机器上运行MPI,而且人们一直在为小型测试代码或小型项目这样做,但这并不是最大的用例。

参考资料
https://www.jianshu.com/p/2fd31665e816
https://zhuanlan.zhihu.com/p/356295181
https://cloud.tencent.com/developer/ask/sof/102475792
https://zhuanlan.zhihu.com/p/465574868
https://blog.csdn.net/ddreaming/article/details/53319501
https://blog.csdn.net/yu132563/article/details/83501870
Bova, Steve W., et al. "Parallel programming with message passing and directives."Computing in Science & Engineering 3.5 (2001): 22-37.
https://blog.csdn.net/u014800094/article/details/59487413
https://www.coder.work/article/7142037
Difference between multi-process programming with fork and MPI - Stack Overflow
https://bellard.org/pi/pi2700e9/
https://extremecomputingtraining.anl.gov//files/2014/01/omp-morning-part1.pdf
https://www.appentra.com/parallel-computation-pi/
https://scc.ustc.edu.cn/zlsc/sugon/intel/ssadiag_docs/pt_reference/references/sc_omp_anti_dependence.html
https://en.wikipedia.org/wiki/Pi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值