TP与TN都是分对了情况,TP是正类,TN是负类。
FP是把错的分成了对的,而FN则是把对的分成了错的。(我的记忆方法:首先看第一个字母是T则代表分类正确,反之分类错误;然后看P,在T中则是正类,若在F中则实际为负类分成了正的。)

1.准确率(accuracy)计算公式

被分对的样本个数除以总的样本个数
注:准确率是最常见的评价指标,通常来说,正确率越高,分类器越好
2.精确率(Precision)

精确率定义为: 预测的正样本中正样本所占的比率
TP与TN都是分对了情况,TP是正类,TN是负类。
FP是把错的分成了对的,而FN则是把对的分成了错的。(我的记忆方法:首先看第一个字母是T则代表分类正确,反之分类错误;然后看P,在T中则是正类,若在F中则实际为负类分成了正的。)

1.准确率(accuracy)计算公式

被分对的样本个数除以总的样本个数
注:准确率是最常见的评价指标,通常来说,正确率越高,分类器越好
2.精确率(Precision)

精确率定义为: 预测的正样本中正样本所占的比率
2356
8599
6万+
3577

被折叠的 条评论
为什么被折叠?