神经元模型 Izhikevich Model

        在上一篇文章中我们介绍了HH模型。HH模型的优点是对神经元的描述十分准确,但时间复杂度较高,不适合在大型网络中使用。人们也提出过简单的LIF模型来模拟神经元,但因为太过简洁而忽略了神经元的一些性质。Izhikevich博士在2003年简化了HH模型,提出Izhikevich模型。简化后的模型如下:

\frac{dv}{dt} = 0.04v^{2} + 5v + 140 - u + I

\frac{du}{dt} = a(bv - u)

且当v\geq 30mV时,v = c, u = u+d

        其中,v代表膜电位,u代表发射脉冲后膜电位的恢复变量,I代表输入电流,而a,b&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值