图像处理-3

文章探讨了拉普拉斯算子的旋转不变性以及傅立叶变换的平移性质。通过数学步骤展示了图像处理中DFT、复共轭和傅里叶反变换的过程,解释了特定操作如何影响图像效果。此外,还讨论了高斯型低通滤波器在频域和空间域的表示,特别是其连续变量下的闭合形式。
摘要由CSDN通过智能技术生成

1.完成课本数字图像处理第二版116页,习题3.25,即拉普拉斯算子具有理论上的旋转不变性。
在这里插入图片描述
2.根据书中对傅立叶变换的定义,证明课本165页上有关傅立叶变换的平移性质。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
3、 观察如下所示图像。右边的图像这样得到:(a)在原始图像左边乘以;(b) 计算离散傅里叶变换(DFT); © 对变换取复共轭; (d) 计算傅里叶反变换; (d) 结果的实部再乘以。(用数学方法解释为什么会产生右图的效果。)
在这里插入图片描述
4、高斯型低通滤波器在频域中的传递函数是在这里插入图片描述根据二维傅里叶性质,证明空间域的相应滤波器形式为在这里插入图片描述(这些闭合形式只适用于连续变量情况。)
在证明中假设已经知道如下结论:在这里插入图片描述
在这里插入图片描述

1、 完成课本习题 3.2(a)(b), 课本中文版《处理》第二版的 113 页。可以通过 matlab 帮助你分析理解。 (a) S=T(r)= Ε (m/r) + 1 1 2、一幅 8 灰度级图像具有如下所示的直方图,求直方图均衡后的灰度级和对应概率,并画出均衡后的直方图的 示意图。 (图中的 8 个不同灰度级对应的归一化直方图为[0.17 0.25 0.21 0.16 0.07 0.08 0.04 0.02]) 由公式可知,变换函数的离散形式为 k=0,1,2,3…L-1 所以 S0=0.17 S1=S0+0.25=0.42 S2=S1+0.21=0.63 S3=S2+0.16=0.79 S4=S3+0.07=0.86 S5=S4+0.08=0.94 S6=S5+0.04=0.98 S7=S6+0.02=1 因为输出图像的灰度级是等间隔的,同时该图像具有 8 个灰度级 1/7,2/7,3/7,4/7,5/7,6/7,1 对之前求得的 Sk 进行修正 S0=1/7 S1=3/7 S2=4/7 S3=6/7 S4=6/7 S5=1 S6=1 S7=1 最后的灰度级仅有 5 个结果 S0=1/7 S1=3/7 S2=4/7 S3=6/7 S4=1 与此相对应的概率为 PS(s0)=0.17 PS(s1)=0.25 PS(s2)=0.21 PS(s3)=0.23 PS(s4)=0.14 3. (选做题)课本习题 3.6。对于离散的情况,用 matlab 进行一下实验。 一样。直方图均衡化的结果一次到达极限。 对于离散的情况,设 n 为图像中像素的总和, k n 1 为输入图像中灰度级为 k r 的像素的个数。 所以,直方图均衡化的转换公式为: k j k k j k k k n n n n r T s 0 = 1 0 = 1 1 = / = ) ( = 由于输入图像中灰度级为 k r 的像素被映射到输出图像灰度级为 k s 的对应像素得到,所以 k k n n 2 1 = 那么,在第二次均衡化的过程中,转换函数为 k j k k k n n s T v 0 = 2 1 = ) ( = 所以,两次转换过程 k k v n = ,既结果相同。 4. 4 完成课本数字图像处理第二版 114 页,习题 3.10。 对于作图, r r dw w dw w p r T s r r r 2 ) 2 2 - ( ) ( ) ( 2 0 0 1 对于右图, 2 0 0 2 2 ) ( ) ( z wdw dw w p z T v z z z 所以, 2 2 r r z 4.请围绕本周课堂讲授的内容编写至少一道习题,并给出自己的分析解答。题目形式可以是填空题、选择题、判断 对错题、计算题、证明题。发挥你的创造力吧。 利用 matlab 绘制幂次变换在不同 γ 下的曲线,并分析图像产生差异的原因和不同取值对变换结果产 幂次曲线中的 γ 的部分之吧输入的窄带暗值映射到宽带输出值上,相反,输入高值也对应成立。随着 γ 取值的变 化,我们能够得到一组变换曲线,c= γ =1 时为正比变换, γ >1 时图像偏暗, γ <1 时图像偏亮。 γ >1 时,从图中我 们可以看到输出灰度级大部分被压缩在较低的水平上, γ <1 时,从图中我们可以看到输出灰度级大部分被压缩在 较高的水平上。 2、 请计算如下两个向量与矩阵的卷积计算结果。 (1) [ 1 2 3 4 5 4 3 2 1] *[ 2 0 -2] 设向量 x1=[1 2 3 4 5 4 3 2 1 ],向量 x2=[2 0 -2],添加下划线的元素设定为 0 位置 x1 1 2 3 4 5 4 3 2 1 -x2 -2 0 2 ————————————————————————————————————— 2 4 6 8 10 8 6 4 2 -2 -4 -6 -8 -10 -8 -6 -4 -2 —————————————————————————————————————————— -2 -4 -4 -4 -4 0 4 4 4 4 2 所以卷积结果为:2 4 4 4 4 0 -4 -4 -4 -4 -2 (2) [ 1 0 1 2 0 2 1 0 1 ] [ 1 3 2 0 4 1 0 3 2 3 0 4 1 0 5 2 3 2 1 4 3 1 0 4 2] = 设题目给定的两个矩阵分别为 d 和 e,大小分别为 3x3 和 5x5,卷积结果为一个 7x7 的矩阵 根据卷积公式, ) , ( ) , ( 1 ) , ( * ) , ( 1 0 1 0 n y m x h n m f MN y x h y x f M m N n F(-3,-3)=e(-2,-2)d(-1,-1)=-1 F(-3,-2)=e(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值