第一型与第二型曲线积分

本文介绍了第一型和第二型曲线积分的定义、区别和联系。第一型积分涉及函数与曲线弧长的乘积,与曲线方向无关,常用于求质量;第二型积分与曲线方向相关,用于计算力在曲线上的功。两者在一定条件下可以通过参数方程建立联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、定义

第一型曲线积分

  设 L \small L L 为平面上可求长度(至于什么叫做可求长度,可参见《复变函数论》(第四版 钟玉泉 著)第25页,只需要知道连续曲线都是可求长度的)的曲线段, f ( x , y ) \small f(x,y) f(x,y) 为定义在 L \small L L 上的函数. 对曲线 L \small L L 作分割 T \small T T,它把 L \small L L 分成 n n n 个可求长度的小曲线段 L i ( i = 1 , 2 , ⋯   , n ) \small L_i (i=1,2,\cdots,n) Li(i=1,2,,n) L i \small L_i Li弧长记为 Δ s i \small \Delta s_i Δsi,分割 T \small T T 的细度定义为 ∣ ∣ T ∣ ∣    = max ⁡ 1 ≤ i ≤ n   Δ s i \small \mid\mid T \mid\mid\;=\max \limits_{1\leq i \leq n}\ \small \Delta s_i ∣∣T∣∣=1inmax Δsi,在 L i \small L_i Li 上任取一点 ( ξ i , η i ) ( i = 1 , 2 , ⋯   , n ) \small (\xi_i,\eta_i)(i=1,2,\cdots,n) (ξi,ηi)(i=1,2,,n). 若有极限
lim ⁡ ∣ ∣ T ∣ ∣ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i = J \lim_{\mid\mid T \mid\mid \to 0}\sum_{i=1}^{n}f(\xi_i,\eta_i)\small \Delta s_i=J ∣∣T∣∣→0limi=1nf(ξi,ηi)Δsi=J J \small J J 的值与分割 T \small T T、点 ( ξ i , η i ) \small (\xi_i,\eta_i) (ξi,ηi) 的取法无关,则称此极限为 f ( x , y ) \small f(x,y) f(x,y) L \small L L 上的第一型曲线积分,记作 ∫ L f ( x , y )   d s . \int_L {f(x,y)}\,ds. Lf(x,y)ds.

第二型曲线积分

  设函数 P ( x , y ) \small P(x,y) P(x,y) Q ( x , y ) \small Q(x,y) Q(x,y) 定义在平面有向可求长度曲线 L : A B ⏠ \small L:\overgroup{AB} LAB 上,对 L \small L L 的任一分割 T \small T T,它把 L \small L L 分割成 n n n 个小弧段 M i − 1 M i ⏠    ( i = 1 , 2 , ⋯   , n ) , \overgroup{M_{i-1}M_i}\;(i=1,2,\cdots,n), Mi1Mi (i=1,2,,n)其中 M 0 = A , M n = B M_0=A, M_n=B M0=A,Mn=B. 记各小弧段 M i − 1 M i ⏠ \small \overgroup{M_{i-1}M_i} Mi1Mi 的弧长为 Δ s i \small \Delta s_i Δsi,分割 T \small T T 的细度为
∣ ∣ T ∣ ∣    = max ⁡ 1 ≤ i ≤ n   Δ s i \small \mid\mid T \mid\mid\;=\max \limits_{1\leq i \leq n}\ \small \Delta s_i ∣∣T∣∣=1inmax Δsi. 又设 T \small T T 的分点 M i \small M_i Mi 的坐标为 ( x i , y i ) \small (x_i,y_i) (xi,yi),并记 Δ x i = x i − x i − 1 , Δ y i = y i − y i − 1    ( i = 1 , 2 , ⋯   , n ) \small \Delta x_i=x_i-x_{i-1},\small\Delta y_i=y_i-y_{i-1}\;(i=1,2,\cdots,n) Δxi=xixi1,Δyi=yiyi1(i=1,2,,n). 在每个小弧段 M i − 1 M i ⏠ \small \overgroup{M_{i-1}M_i} Mi1Mi 上任取一点 ( ξ i , η i ) \small (\xi_i,\eta_i) (ξi,ηi),若有极限
lim ⁡ ∣ ∣ T ∣ ∣ → 0 ∑ i = 1 n P ( ξ i , η i ) Δ x i + lim ⁡ ∣ ∣ T ∣ ∣ → 0 ∑ i = 1 n Q ( ξ i , η i ) Δ y i = J \lim_{\mid\mid T \mid\mid \to 0}\sum_{i=1}^{n}P(\xi_i,\eta_i)\small \Delta x_i+\lim_{\mid\mid T \mid\mid \to 0}\sum_{i=1}^{n}Q(\xi_i,\eta_i)\small \Delta y_i=J ∣∣T∣∣→0limi=1nP(ξi,ηi)Δxi+∣∣T∣∣→0limi=1nQ(ξi,ηi)Δyi=J J \small J J 的值与分割 T \small T T、点 ( ξ i , η i ) \small (\xi_i,\eta_i) (ξi,ηi) 的取法无关,则称此极限为函数 P ( x , y ) , Q ( x , y ) \small P(x,y), Q(x,y) P(x,y),Q(x,y) 沿有向曲线 L \small L L 上的第二型曲线积分,记作
∫ L P ( x , y ) d x + Q ( x , y ) d y    o r ∫ A B P ( x , y ) d x + Q ( x , y ) d y . \int_L {P(x,y)}dx+{Q(x,y)}dy\; or\int_{AB}{P(x,y)}dx+{Q(x,y)}dy. LP(x,y)dx+Q(x,y)dyorABP(x,y)dx+Q(x,y)dy.

二、 区别

  第二型曲线积分与曲线 L \small L L方向有关. 对同一曲线,当方向由从 A \small A A B \small B B 改为从 B \small B B A \small A A 时,每一小曲线段的方向也改变,从而 Δ x i , Δ y i \small \Delta x_i,\Delta y_i Δxi,Δyi 也随之改变符号,故有
∫ A B P ( x , y ) d x + Q ( x , y ) d y = − ∫ B A P ( x , y ) d x + Q ( x , y ) d y \int_{AB}{P(x,y)}dx+{Q(x,y)}dy=-\int_{BA}{P(x,y)}dx+{Q(x,y)}dy ABP(x,y)dx+Q(x,y)dy=BAP(x,y)dx+Q(x,y)dy   而第一型曲线积分的被积表达式只是函数 f ( x , y ) \small f(x,y) f(x,y) 与弧长的乘积,它与曲线 L \small L L 的方向无关.

三、联系

  两类曲线积分的物理原型
  第一型曲线积分:已知某曲线段的密度函数,求该曲线段的质量;
  第二型曲线积分:一质点受力 F ( x , y ) \small \bm{F}(x,y) F(x,y) 的作用沿平面曲线 L \small L L 由点 A \small A A 运动到点 B \small B B,求力 F ( x , y ) \small \bm{F}(x,y) F(x,y) 所作的功.
  虽然两类曲线积分来自于不同的物理原型,且有着不同的特性. 但在一定条件下,例如规定曲线的方向后,可以建立它们之间的联系.

  设 L \small L L 为从 A \small A A B \small B B 的有向光滑曲线,它以弧长 s s s 为参数,于是 L \small L L 可以表示为
L : { x = x ( s ) , 0 ≤ s ≤ l y = y ( s ) , 0 ≤ s ≤ l L: \begin{cases} \displaystyle x=x(s), {0 \leq s \leq l}\\ y=y(s), {0 \leq s \leq l} \end{cases} L:{x=x(s),0sly=y(s),0sl其中 l l l 为曲线 L \small L L 的长度,且点 A \small A A B \small B B 的坐标分别为 ( x ( 0 ) , y ( 0 ) ) \small (x(0),y(0)) (x(0),y(0)) ( x ( l ) , y ( l ) ) \small (x(l),y(l)) (x(l),y(l)). 曲线 L \small L L 上每一点的切线方向都指向弧长增加的方向,即从 A \small A A 出发沿曲线朝 B \small B B 走的方向. 现以 ( t , x ^ ) 、 ( t , y ^ ) (\widehat{\bm{t},x})、(\widehat{\bm{t},y}) (t,x )(t,y ) 分别表示切线方向 t \bm{t} t x x x 轴、与 y y y 轴正向的夹角,则曲线上每一点的切线方向余弦是
d x d s = c o s ( t , x ^ ) , d y d s = c o s ( t , y ^ ) . \frac{dx}{ds}=cos(\widehat{\bm{t},x}),\frac{dy}{ds}=cos(\widehat{\bm{t},y}). dsdx=cos(t,x ),dsdy=cos(t,y ). P ( x , y ) , Q ( x , y ) \small P(x,y),\small Q(x,y) P(x,y),Q(x,y) 为曲线 L L L 上的连续函数,则有如下关系式:

∫ L P ( x , y ) d x + Q ( x , y ) d y =    ∫ 0 l P ( x ( s ) , y ( s ) ) d x d s d s + Q ( x ( s ) , y ( s ) ) d y d s d s =    ∫ 0 l [ P ( x ( s ) , y ( s ) ) c o s ( t , x ^ ) + Q ( x ( s ) , y ( s ) ) c o s ( t , y ^ ) ] d s =    ∫ L [ P ( x , y ) c o s ( t , x ^ ) + Q ( x , y ) c o s ( t , y ^ ) ] d s \begin{aligned} &\int_L {P(x,y)}dx+{Q(x,y)}dy \\ =&\;\int_0^l {P(x(s),y(s))\frac{dx}{ds}ds+Q(x(s),y(s))\frac{dy}{ds}ds} \\=&\;\int_0^l {[P(x(s),y(s))cos(\widehat{\bm{t},x})+Q(x(s),y(s))cos(\widehat{\bm{t},y})]ds}\\=&\;\int_L{[P(x,y)cos(\widehat{\bm{t},x})+Q(x,y)cos(\widehat{\bm{t},y})]ds} \end{aligned} ===LP(x,y)dx+Q(x,y)dy0lP(x(s),y(s))dsdxds+Q(x(s),y(s))dsdyds0l[P(x(s),y(s))cos(t,x )+Q(x(s),y(s))cos(t,y )]dsL[P(x,y)cos(t,x )+Q(x,y)cos(t,y )]ds最后一个等式将定积分转化为第一型曲线积分.

  这里需要指出,当第二型曲线积分中 L \small L L 改变方向时,曲线上各点的切线方向与原来相反,这时夹角 ( t , x ^ ) , ( t , y ^ ) (\widehat{\bm{t},x}),(\widehat{\bm{t},y}) (t,x ),(t,y ) 与原来的夹角相差弧度 π \pi π c o s ( t , x ^ ) cos(\widehat{\bm{t},x}) cos(t,x ) c o s ( t , y ^ ) cos(\widehat{\bm{t},y}) cos(t,y ) 都要变号,从而积分值的符号改变. 可以看出,曲线的方向性在第一型曲线积分中以 c o s ( t , x ^ ) cos(\widehat{\bm{t},x}) cos(t,x ) c o s ( t , y ^ ) cos(\widehat{\bm{t},y}) cos(t,y ) 的形式得以体现,与 d s ds ds 无关,这里的 d s ds ds 仍表示弧长微元.
  这样便建立起了两种不同类型曲线积分之间的联系.

参考文献:华东师范大学数学系. 数学分析(下册)[M]. 第四版. 北京:高等教育出版社,2010: 209-221.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值