一、定义
第一型曲线积分
设
L
\small L
L 为平面上可求长度(至于什么叫做可求长度,可参见《复变函数论》(第四版 钟玉泉 著)第25页,只需要知道连续曲线都是可求长度的)的曲线段,
f
(
x
,
y
)
\small f(x,y)
f(x,y) 为定义在
L
\small L
L 上的函数. 对曲线
L
\small L
L 作分割
T
\small T
T,它把
L
\small L
L 分成
n
n
n 个可求长度的小曲线段
L
i
(
i
=
1
,
2
,
⋯
,
n
)
\small L_i (i=1,2,\cdots,n)
Li(i=1,2,⋯,n),
L
i
\small L_i
Li 的弧长记为
Δ
s
i
\small \Delta s_i
Δsi,分割
T
\small T
T 的细度定义为
∣
∣
T
∣
∣
=
max
1
≤
i
≤
n
Δ
s
i
\small \mid\mid T \mid\mid\;=\max \limits_{1\leq i \leq n}\ \small \Delta s_i
∣∣T∣∣=1≤i≤nmax Δsi,在
L
i
\small L_i
Li 上任取一点
(
ξ
i
,
η
i
)
(
i
=
1
,
2
,
⋯
,
n
)
\small (\xi_i,\eta_i)(i=1,2,\cdots,n)
(ξi,ηi)(i=1,2,⋯,n). 若有极限
lim
∣
∣
T
∣
∣
→
0
∑
i
=
1
n
f
(
ξ
i
,
η
i
)
Δ
s
i
=
J
\lim_{\mid\mid T \mid\mid \to 0}\sum_{i=1}^{n}f(\xi_i,\eta_i)\small \Delta s_i=J
∣∣T∣∣→0limi=1∑nf(ξi,ηi)Δsi=J且
J
\small J
J 的值与分割
T
\small T
T、点
(
ξ
i
,
η
i
)
\small (\xi_i,\eta_i)
(ξi,ηi) 的取法无关,则称此极限为
f
(
x
,
y
)
\small f(x,y)
f(x,y) 在
L
\small L
L 上的第一型曲线积分,记作
∫
L
f
(
x
,
y
)
d
s
.
\int_L {f(x,y)}\,ds.
∫Lf(x,y)ds.
第二型曲线积分
设函数
P
(
x
,
y
)
\small P(x,y)
P(x,y) 与
Q
(
x
,
y
)
\small Q(x,y)
Q(x,y) 定义在平面有向可求长度曲线
L
:
A
B
⏠
\small L:\overgroup{AB}
L:AB
上,对
L
\small L
L 的任一分割
T
\small T
T,它把
L
\small L
L 分割成
n
n
n 个小弧段
M
i
−
1
M
i
⏠
(
i
=
1
,
2
,
⋯
,
n
)
,
\overgroup{M_{i-1}M_i}\;(i=1,2,\cdots,n),
Mi−1Mi
(i=1,2,⋯,n),其中
M
0
=
A
,
M
n
=
B
M_0=A, M_n=B
M0=A,Mn=B. 记各小弧段
M
i
−
1
M
i
⏠
\small \overgroup{M_{i-1}M_i}
Mi−1Mi
的弧长为
Δ
s
i
\small \Delta s_i
Δsi,分割
T
\small T
T 的细度为
∣
∣
T
∣
∣
=
max
1
≤
i
≤
n
Δ
s
i
\small \mid\mid T \mid\mid\;=\max \limits_{1\leq i \leq n}\ \small \Delta s_i
∣∣T∣∣=1≤i≤nmax Δsi. 又设
T
\small T
T 的分点
M
i
\small M_i
Mi 的坐标为
(
x
i
,
y
i
)
\small (x_i,y_i)
(xi,yi),并记
Δ
x
i
=
x
i
−
x
i
−
1
,
Δ
y
i
=
y
i
−
y
i
−
1
(
i
=
1
,
2
,
⋯
,
n
)
\small \Delta x_i=x_i-x_{i-1},\small\Delta y_i=y_i-y_{i-1}\;(i=1,2,\cdots,n)
Δxi=xi−xi−1,Δyi=yi−yi−1(i=1,2,⋯,n). 在每个小弧段
M
i
−
1
M
i
⏠
\small \overgroup{M_{i-1}M_i}
Mi−1Mi
上任取一点
(
ξ
i
,
η
i
)
\small (\xi_i,\eta_i)
(ξi,ηi),若有极限
lim
∣
∣
T
∣
∣
→
0
∑
i
=
1
n
P
(
ξ
i
,
η
i
)
Δ
x
i
+
lim
∣
∣
T
∣
∣
→
0
∑
i
=
1
n
Q
(
ξ
i
,
η
i
)
Δ
y
i
=
J
\lim_{\mid\mid T \mid\mid \to 0}\sum_{i=1}^{n}P(\xi_i,\eta_i)\small \Delta x_i+\lim_{\mid\mid T \mid\mid \to 0}\sum_{i=1}^{n}Q(\xi_i,\eta_i)\small \Delta y_i=J
∣∣T∣∣→0limi=1∑nP(ξi,ηi)Δxi+∣∣T∣∣→0limi=1∑nQ(ξi,ηi)Δyi=J且
J
\small J
J 的值与分割
T
\small T
T、点
(
ξ
i
,
η
i
)
\small (\xi_i,\eta_i)
(ξi,ηi) 的取法无关,则称此极限为函数
P
(
x
,
y
)
,
Q
(
x
,
y
)
\small P(x,y), Q(x,y)
P(x,y),Q(x,y) 沿有向曲线
L
\small L
L 上的第二型曲线积分,记作
∫
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
o
r
∫
A
B
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
.
\int_L {P(x,y)}dx+{Q(x,y)}dy\; or\int_{AB}{P(x,y)}dx+{Q(x,y)}dy.
∫LP(x,y)dx+Q(x,y)dyor∫ABP(x,y)dx+Q(x,y)dy.
二、 区别
第二型曲线积分与曲线
L
\small L
L 的方向有关. 对同一曲线,当方向由从
A
\small A
A 到
B
\small B
B 改为从
B
\small B
B 到
A
\small A
A 时,每一小曲线段的方向也改变,从而
Δ
x
i
,
Δ
y
i
\small \Delta x_i,\Delta y_i
Δxi,Δyi 也随之改变符号,故有
∫
A
B
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
−
∫
B
A
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
\int_{AB}{P(x,y)}dx+{Q(x,y)}dy=-\int_{BA}{P(x,y)}dx+{Q(x,y)}dy
∫ABP(x,y)dx+Q(x,y)dy=−∫BAP(x,y)dx+Q(x,y)dy 而第一型曲线积分的被积表达式只是函数
f
(
x
,
y
)
\small f(x,y)
f(x,y) 与弧长的乘积,它与曲线
L
\small L
L 的方向无关.
三、联系
两类曲线积分的物理原型:
第一型曲线积分:已知某曲线段的密度函数,求该曲线段的质量;
第二型曲线积分:一质点受力
F
(
x
,
y
)
\small \bm{F}(x,y)
F(x,y) 的作用沿平面曲线
L
\small L
L 由点
A
\small A
A 运动到点
B
\small B
B,求力
F
(
x
,
y
)
\small \bm{F}(x,y)
F(x,y) 所作的功.
虽然两类曲线积分来自于不同的物理原型,且有着不同的特性. 但在一定条件下,例如规定曲线的方向后,可以建立它们之间的联系.
设
L
\small L
L 为从
A
\small A
A 到
B
\small B
B 的有向光滑曲线,它以弧长
s
s
s 为参数,于是
L
\small L
L 可以表示为
L
:
{
x
=
x
(
s
)
,
0
≤
s
≤
l
y
=
y
(
s
)
,
0
≤
s
≤
l
L: \begin{cases} \displaystyle x=x(s), {0 \leq s \leq l}\\ y=y(s), {0 \leq s \leq l} \end{cases}
L:{x=x(s),0≤s≤ly=y(s),0≤s≤l其中
l
l
l 为曲线
L
\small L
L 的长度,且点
A
\small A
A 与
B
\small B
B 的坐标分别为
(
x
(
0
)
,
y
(
0
)
)
\small (x(0),y(0))
(x(0),y(0)) 与
(
x
(
l
)
,
y
(
l
)
)
\small (x(l),y(l))
(x(l),y(l)). 曲线
L
\small L
L 上每一点的切线方向都指向弧长增加的方向,即从
A
\small A
A 出发沿曲线朝
B
\small B
B 走的方向. 现以
(
t
,
x
^
)
、
(
t
,
y
^
)
(\widehat{\bm{t},x})、(\widehat{\bm{t},y})
(t,x
)、(t,y
) 分别表示切线方向
t
\bm{t}
t 与
x
x
x 轴、与
y
y
y 轴正向的夹角,则曲线上每一点的切线方向余弦是
d
x
d
s
=
c
o
s
(
t
,
x
^
)
,
d
y
d
s
=
c
o
s
(
t
,
y
^
)
.
\frac{dx}{ds}=cos(\widehat{\bm{t},x}),\frac{dy}{ds}=cos(\widehat{\bm{t},y}).
dsdx=cos(t,x
),dsdy=cos(t,y
).若
P
(
x
,
y
)
,
Q
(
x
,
y
)
\small P(x,y),\small Q(x,y)
P(x,y),Q(x,y) 为曲线
L
L
L 上的连续函数,则有如下关系式:
∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ 0 l P ( x ( s ) , y ( s ) ) d x d s d s + Q ( x ( s ) , y ( s ) ) d y d s d s = ∫ 0 l [ P ( x ( s ) , y ( s ) ) c o s ( t , x ^ ) + Q ( x ( s ) , y ( s ) ) c o s ( t , y ^ ) ] d s = ∫ L [ P ( x , y ) c o s ( t , x ^ ) + Q ( x , y ) c o s ( t , y ^ ) ] d s \begin{aligned} &\int_L {P(x,y)}dx+{Q(x,y)}dy \\ =&\;\int_0^l {P(x(s),y(s))\frac{dx}{ds}ds+Q(x(s),y(s))\frac{dy}{ds}ds} \\=&\;\int_0^l {[P(x(s),y(s))cos(\widehat{\bm{t},x})+Q(x(s),y(s))cos(\widehat{\bm{t},y})]ds}\\=&\;\int_L{[P(x,y)cos(\widehat{\bm{t},x})+Q(x,y)cos(\widehat{\bm{t},y})]ds} \end{aligned} ===∫LP(x,y)dx+Q(x,y)dy∫0lP(x(s),y(s))dsdxds+Q(x(s),y(s))dsdyds∫0l[P(x(s),y(s))cos(t,x )+Q(x(s),y(s))cos(t,y )]ds∫L[P(x,y)cos(t,x )+Q(x,y)cos(t,y )]ds最后一个等式将定积分转化为第一型曲线积分.
这里需要指出,当第二型曲线积分中
L
\small L
L 改变方向时,曲线上各点的切线方向与原来相反,这时夹角
(
t
,
x
^
)
,
(
t
,
y
^
)
(\widehat{\bm{t},x}),(\widehat{\bm{t},y})
(t,x
),(t,y
) 与原来的夹角相差弧度
π
\pi
π,
c
o
s
(
t
,
x
^
)
cos(\widehat{\bm{t},x})
cos(t,x
) 和
c
o
s
(
t
,
y
^
)
cos(\widehat{\bm{t},y})
cos(t,y
) 都要变号,从而积分值的符号改变. 可以看出,曲线的方向性在第一型曲线积分中以
c
o
s
(
t
,
x
^
)
cos(\widehat{\bm{t},x})
cos(t,x
) 和
c
o
s
(
t
,
y
^
)
cos(\widehat{\bm{t},y})
cos(t,y
) 的形式得以体现,与
d
s
ds
ds 无关,这里的
d
s
ds
ds 仍表示弧长微元.
这样便建立起了两种不同类型曲线积分之间的联系.
参考文献:华东师范大学数学系. 数学分析(下册)[M]. 第四版. 北京:高等教育出版社,2010: 209-221.