【半监督分割】利用有限数据分割医学图像

        本文提出了一种基于一致性的半监督式新方法,DEMS 采用编码器-解码器架构,并结合了已开发的在线自动增强器(OAA)和残差鲁棒性增强(RRE)模块。OAA 通过各种图像变换来增强输入数据,从而使数据集多样化,提高泛化能力。RRE 可丰富特征多样性并引入扰动,为不同的解码器创建不同的输入,从而提供更强的可变性。此外,还引入了敏感损失,以进一步提高不同解码器之间的一致性,并稳定训练过程。

Challenges and improvements

        实现高精度医学影像分割的主要挑战在于如何通过检测和 SSL 更有效地利用有限的无标记数据。为了利用有限的数据,目前的方法包括传统的数据分析、基于 GAN 的数据分析和自动数据分析。然而,这些方法都面临着独特的挑战。传统 DA 管道的设计在很大程度上依赖于经验知识。基于 GAN 的数模转换可能会遇到合成质量不一致、计算成本高和数据需求量大等问题。自动数据分析可能会导致相当大的计算开销、程序复杂性和潜在的模型混淆。作为一种替代方案,本文提出了一种无需训练的 OAA 方法,它的计算成本最低,并且消除了阶段复杂性。这种方法通过在线增强的方式,在训练过程中对输入数据进行量身定制的转换,以增强普适性。在利用无标记数据方面,现有的架构主要分为基于 MT 的方法和其他方法。然而,基于不同架构的方法会遇到不同的挑战。基于 MT 的方法受到教师网络性能和模型可变性的限制。其他方法则可能面临变异性有限和稳定性降低的问题。为此,本文提出了一种精心设计的编码器-解码器架构,其中包含创新的 RRE 块和灵敏度损失。RRE 块使特征多样化,并引入扰动以产生不同的解码器输入,从而提高了可变性。灵敏度损失增强了不同解码器之间的一致性,并稳定了训练过程。将多期损失函数与热身函数相结合,以增强训练的稳定性,尤其是在早期训练阶段。

Methods

Data-efficient medical segmenter

        DEMS 的结构如图 1 所示。DEMS 采用编码器-解码器结构,并结合了开发的 OAA 和 RRE 模块。需要注意的是,辅助解码器只在训练阶段使用。编码器 E、主解码器 Dm 和辅助解码器 Da1、Da2 和 Da3 的结构沿用了 U-Net 的结构(Ronneberger、Fischer 和 Brox,2015 年)。OAA 通过各种图像变换来增强输入数据,从而使数据集多样化,提高泛化能力RRE 模块可使特征多样化,并引入扰动以生成不同的解码器输入,从而提供更强的可变性。损失函数 L 包括标注图像的融合损失 Lf 和灵敏度损失 Ls,以及未标注图像的无监督损失 Lu。建议使用敏感损失来进一步增强不同解码器之间的一致性,并稳定模型训练。

 

Online automatic augmenter 

        本文重新审视了 MedAugment 的基本方面,为提出的改进建议奠定了基础。MedAugment 是一种离线自动数据添加方法,它在模型训练前的单独准备阶段将输入数据集扩展为更大的数据集。它由 N = 4 个增强分支和一个附加分支组成。每个增强分支对每个输入执行 M = [2, 3] 次转换。通过采样策略 Π 中的一个子策略,从像素增强空间 Ap 和空间增强空间 As 对变换进行采样。该策略包括四个子策略,分别从 Ap 和 As 中采样 [1, 0, 1, 0] 和 [2, 3, 1, 2] 变换。每个分支的采样变换随后进行洗牌。每个变换 MA 的最大幅度和增强概率 PA 根据增强级别 L 控制,应用的幅度是均匀采样的在最大边界内。保留附加分支是为了保留源视觉信息。

        在 MedAugment 的基础上引入了 OAA,以执行在线自动诊断,并使输入数据多样化,从而增强泛化能力。将多个分支合并为一个主分支,以执行一对一增强。根据这一设置,每个输入数据都会通过使用 Π 中的一个子策略采样的变换进行增强。对采用每个子策略的概率进行均匀分布。附加分支不包括在内,因为它对一对一增强设置没有贡献。鉴于从 Ap 中采样的变换数量有限,并考虑到 As 中的变换不会影响医学图像的有效性,采用了替换采样,以提供丰富的数据多样性,从而增强泛化能力。这种修改提供了更全面的变换组合集,使得具有相同变换的组合也可用于采样。在 算法1 中展示了 OAA 的伪代码,它演示了在单个纪元内增强输入图像及其相应掩码的过程。需要注意的是,有几种变换的幅度并不固定。在图 2 中,展示了 OAA 的工作流程,说明了输入数据如何在整个训练过程中进行增强。输入图像和掩膜在每个连续的时间点都会经历不同的变换,从而确保了显著的泛化能力。只需一行代码,OAA 就能无缝集成到已建立的 DA 管道中,利用它就像利用任意传统 DA 变换一样简单。

Block and connection structure 

        开发了 RRE 模块,使特征多样化,并引入扰动以产生不同的解码器输入,从而提高可变性。图 3a 展示了 RRE 模块的结构。RRE 块具有两个不同的输入输出对,分别用菱形和圆形表示。RRE 块的主要组件包括残差连接、深度卷积、点卷积(PwConv)和特征扰动注入(FPI)块。残差连接通过缓解梯度消失问题来帮助训练深度网络,从而确保信息流更加顺畅。DwConv 和 PwConv 的配置赋予了模型强大的表征能力,同时保持了计算效率。FPI 块注入了多种扰动,包括特征噪声、特征丢失和丢失。

 

        图 3b 展示了编码器和解码器之间的连接结构。编码器由五个卷积块组成,在前四个卷积块的每个块后插入四个最大池化层。每个卷积块包括两个 3 × 3 卷积层,然后是批量归一化层和 GELU 激活函数。解码器分为四个上采样阶段,每个阶段由一个上采样块、一个特征串联层和一个卷积块组成。上采样块由上采样层、3 × 3 卷积层、批次归一化层和 GELU 激活函数组成。给定编码器在不同块 f1、f2、f3、f4 和 f5 的输出,第一个 RRE 块通过两个不同的输入端口接收来自所有块的输入。随后的区块将 f1、f2、f3、f4 和前面区块的输出作为输入。此外,与主解码器和辅助解码器之间跳转连接相关的输出端口也各不相同。缜密的连接设计确保每个解码器的输入都经过不同数量的卷积运算、不同的扰动或两者兼而有之。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI_Med

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值