三维点云语义分割
文章平均质量分 93
三维点云处理最新进展
木木要早睡
分享深度学习、医学图像处理等学习经验
展开
-
【最新综述】机器人视觉 SLAM 的最新综述(上)
SLAM 在机器人、无人飞行器和无人车辆的导航中发挥着重要作用。定位精度将影响避障精度。地图构建的质量直接影响后续路径规划和其他算法的性能。它是智能移动应用的核心算法。因此,机器人视觉 SLAM 具有很大的研究价值,将是未来的一个重要研究方向。研究目的本文通过回顾计算机视觉 SLAM 的最新发展情况,为相关领域的研究人员提供参考。方法:从算法、创新和应用三个方面分析了计算机视觉 SLAM 的文献。其中,近十年来共有 30 多项专利和近 30 篇文献。原创 2024-01-12 15:38:17 · 4447 阅读 · 0 评论 -
【最新综述】史上最全面的3D语义分割综述(下)
三维实例分割方法还能区分同一类别的不同实例。由于三维实例分割是一项对场景理解更有参考价值的任务,因此越来越受到研究界的关注。三维实例分割方法大致分为两个方向:proposal-based和proposal-free。 基于提议的方法首先预测对象提议,然后对其进行完善,生成最终的实例掩码(见图 7),从而将任务分解为两大挑战。因此,从建议生成的角度来看,这些方法可分为基于检测的方法和无检测方法。 基于检测的方法有时会将物体建议定义为三维边界框回归问题。3D-SIS Hou、Dai原创 2024-01-24 14:11:06 · 1713 阅读 · 0 评论 -
【最新综述】史上最全面的3D语义分割综述(中)
文献中提出了许多关于三维语义分割的深度学习方法。根据所使用的数据表示方式,这些方法可分为五类,即基于 RGB-D 图像的方法、基于投影图像的方法、基于体素的方法、基于点的方法、基于三维视频的方法和基于其他表示方式的方法。根据网络架构,基于点的方法可进一步分为基于多层感知器(MLP)的方法、基于点卷积的方法、基于图卷积的方法和基于点变换器的方法。图 4 显示了近年来深度学习在三维语义分割方面取得的阶段性成果。 RGB-D 图像中的深度图包含真实世界的几何信息,有助于区分前景物体和背景,从而为提高原创 2024-01-18 15:55:26 · 1777 阅读 · 0 评论 -
【最新综述】史上最全面的3D语义分割综述(上)
三维分割是计算机视觉领域的一个基本而具有挑战性的问题,可应用于自动驾驶、机器人、增强现实和医学图像分析。它受到了计算机视觉、图形学和机器学习界的极大关注。传统的三维分割方法基于手工创建的特征和机器学习分类器,缺乏泛化能力。在二维计算机视觉领域取得成功的推动下,深度学习技术最近已成为三维分割任务的首选工具。这导致文献中出现了大量在不同基准数据集上进行评估的方法。虽然存在关于 RGB-D 和点云分割的调查论文,但缺乏涵盖所有三维数据模式和应用领域的深入的最新调查。原创 2024-01-24 14:34:39 · 2998 阅读 · 0 评论 -
【最新综述】弱监督3D点云语义分割综述(上)
随着三维点云数据采集技术和传感器的普及和发展,基于深度学习的三维点云研究取得了长足进步。随着可访问数据集数量的增加,完全有监督的语义分割任务的准确性和有效性大大提高。这些方法训练神经网络,以更少的点标签来处理三维语义分割任务。 除了全面概述三维点云弱监督语义分割的历史和现状之外,还详细介绍了最广泛使用的数据采集传感器、可公开访问的基准数据集列表以及未来潜在的发原创 2023-12-27 16:02:43 · 1649 阅读 · 0 评论 -
【最新综述】基于深度学习的无监督点云表征学习综述(上)
根据技术方法对现有的无监督点云表示学习方法进行了广泛讨论。我们还在多个广泛采用的点云数据集上对所审查的方法进行了定量基准测试和讨论。最后,我们就未来无监督点云表示学习研究中可能面临的几个挑战和问题分享了自己的浅见。原创 2023-12-28 11:35:48 · 1577 阅读 · 1 评论 -
【最新综述】弱监督3D点云语义分割综述(下)
该数据集包括3亿个点和22个分类,每个点都包含标签和分类信息,可用于点与点之间的检测、分割和分类评估。不同平台上的激光扫描仪为同一项目采集的数据在点密度、遮挡和分辨率方面会有很大差异,因此需要为不同的工作选择不同的数据采集和处理策略。S3DIS 有超过 2.15 亿个点和 13 个语义类别,包括天花板、地板、墙壁、梁、柱、窗户、门、桌子、椅子、沙发、书柜、木板和杂物。4.研究基于伪三维标注的方法是当前最热门的研究方向,未来的研究必须关注如何更好地保留标注点中真正有用的信息,并生成更准确的伪标注。原创 2023-12-27 20:20:36 · 1082 阅读 · 0 评论