第四章 数学知识 博弈论

1、Nim游戏

在这里插入图片描述
首先明确两种状态:

  • 先手必败状态:走不到任何一个必败状态
  • 先手必胜状态 可以走到某一个必败状态

1.结论

给定一堆石子 a 1 , a 2 , . . . a n a_1,a_2,...a_n a1,a2,...an,如果 a 1 a_1 a1^ a 2 a_2 a2^…^ a n a_n an=0,则先手必败,否则先手必胜。

2.证明

  1. 首先 0 ^ 0 ^ 0 ^ …… 0 ^ 0 = 0的时候,此时是必败的。因为没有任何可以取的石子。
  2. 第二 当 a1 ^ a2 ^ a3 ^ …… ^ an = x != 0 的时候 此时可以证明,先手一定可以拿出一定的数量使得整个式子的结果为 0
    证明:首先,当不等于0的时候,设x的最高的1的位置为ai的第k位。那么必有a1 - an中一定存在一个数使得ai的第k位为1(如果没有的话,x的第k位一定不是1)。
    设个这ai的第k位为1,那么 ai ^ x一定小于ai 因为 ^ 是不进位加法,x前面都是0,所以前面 ai 和 ai ^ x一定是相同的 后面 由于ai 的第k位 = 1,x的第k位 = 1 那么这两个位的异或值一定是0
    所以 ai > ai ^ x
    我们从ai 中 拿出 (ai - ai ^ x) 个球球来
    这样 ai 剩下的球球个数为
    ai - (ai - ai ^ x) = ai - ai + ai ^ x = ai ^ x
    那么拿完球之后的式子为
    a1 ^ a2 ^ a3 ^ ai ^ x…… ^ an = x ^ x = 0
    得证
  3. 第三 ,当 a1 ^ a2 ^ a3 ^ …… ^ an = 0的时候,不管怎么拿,都不可能使得式子 = 0
    证明 :假设ai拿了几个石子之后剩下ai’,式子变成了0
    那么有
    a1 ^ a2 ^ …^ai’ ^ …^ an = 0
    a1 ^ a2 ^ … ^ai’ ^ …^ an = 0
    把这两边联立
    有 a1 ^ a1 ^ a2 ^ a2 …^ ai ^ ai’ …^ an ^an = 0 ^ 0
    ai ^ ai’ = 0
    那么ai = ai’ 矛盾
    所以得证

由上面三条结论可以得到

如果 开局异或起来不等于0 那么先手总有办法让式子 = 0。那么后手不管怎么弄也不能让式子为0。这样随着每次都进行拿石子的活动,最后的全0局面就一定是后手的人先碰到,反之亦然。

#include<cstdio>
using namespace std;

int main()
{
    int n;
    scanf("%d",&n);
    int res = 0;
    //核心判断逻辑
    for(int i = 0; i < n; i ++)
    {
        int t;
        scanf("%d",&t);
        res ^= t;
    }
    if(res)printf("Yes\n");
    else printf("No\n");
}

2、台阶Nim游戏

现在,有一个 n 级台阶的楼梯,每级台阶上都有若干个石子,其中第 i 级台阶上有 ai 个石子(i≥1)。
两位玩家轮流操作,每次操作可以从任意一级台阶上拿若干个石子放到下一级台阶中(不能不拿)。
已经拿到地面上(0层)的石子不能再拿,最后无法进行操作的人视为失败。问如果两人都采用最优策略,先手是否必胜。

1.结论

如果对手将偶数层的石子向下移动,我们可以将该石子移动到下一个偶数层。所以只要移动偶数层的石子,我们永远都可以模仿操作,并将石子继续放入偶数层。所以我们不需要关心偶数层的情况。
如果对手移动奇数层。那么只考虑奇数层的情况下,就是传统的nim游戏,按照传统nim游戏操作。

#include<cstdio>
using namespace std;

int main()
{
	int n,res = 0;
	scanf("%d",&n);
	for(int i = 0; i < n; i ++)
	{
		int tmp;
		scanf("%d",&tmp);
		if(i % 2)
		{
			res ^= tmp;
		}
	}
	if(tmp) printf("Yes\n");
	else printf("No\n");
}

3. 集合Nim游戏

给定 n 堆石子以及一个由 k 个不同正整数构成的数字集合 S。
现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合 S,最后无法进行操作的人视为失败。问如果两人都采用最优策略,先手是否必胜。

1.SG函数

1.Mex运算

设S表示一个非负整数集合,定义mex(S)等于不属于S的最小非负整数(包括0)。

2.SG函数

我们可以用下面这个例子说明什么是SG函数
首先将终点状态的SG值定义为0(也就是无法继续向别的地方走的状态)
在这里插入图片描述
对于剩下的点,我们取SG(x)=mex{SG(y1),SG(y2)…SG(yn)}
在这里插入图片描述
例如上面的点,其SG值就等于1
在这里插入图片描述
整个图的SG值等于这个有向无环图起点的SG值

这样之后,任何一个非零状态都可以到0,任何一个0状态都是不能一步走到0的。我们可以把所有取法组织成一个如上的有向无环图。所以先手可以走完让后面的状态变成0,这样后面的一定输了。
那这样定义01不就好了吗 为什么还要这么多数字呢?因为可能有多个图(例如多堆石子,每堆石子维护自己的状态),玩家可以选择任何一个堆进行游戏。

2.结论

xi代表第i个图的起点,SG(x1)^SG(x2)^…^SG(xn)=0,则先手必败,否则必胜

3.例子

在这里插入图片描述
上图是一个例子。可以看到该情景SG函数值为1,那么先手总可以保证自己在操作完之后,得到的状态值为0

#include<cstdio>
#include<cstring>
#include<unordered_set>
using namespace std;
const int N = 110;
int s[N],n,k,res,f[10010];
int nim(int t)
{
    if(f[t] != -1) return f[t];
    unordered_set<int> ss;
    for(int i = 0; i < k; i ++)
    {
        if(s[i] <= t){
            ss.insert(nim(t - s[i]));
        }
    }
    //寻找大于等于i的第一个非负整数
    for(int i = 0; ; i ++)
    {
        if(!ss.count(i)){
            f[t] = i;
            return i;
        }
    }
}
int main()
{
    scanf("%d",&k);
    memset(f,-1,sizeof f);
    for(int i = 0; i < k; i ++)
    {
        scanf("%d",&s[i]);
    }
    scanf("%d",&n);
    for(int i = 0; i < n; i ++)
    {
        int t;
        scanf("%d",&t);
        res ^= nim(t);
    }
    if(res){
        printf("Yes");
    }else{
        printf("No");
    }
}

参考资料

Acwing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值