数学板块学习之博弈论

博弈论

数学学习中,记录学习,退役前持续更新

奇异局势:也叫必败局面。无论做出何出操作,最终结果都是输的局面。必败局面经过2次操作后,可以达到另一个必败局面
奇异局势有如下三条性质:
1、任何自然数都包含且仅包含在一个奇异局势中。
2、任意操作都可以使奇异局势变为非奇异局势。
3、必有一种操作可以使非奇异局势变为奇异局势。

巴什博弈(Bash Game)

问题模型:只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次取1-m个,最后取光者胜。
解决思路:当n=m+1时,由于一次最多只能取m个,所以无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜,所以当一方面对的局势是n%(m+1)=0时,其面临的是必败的局势。所以当n=(m+1)*r+s,(r为任意自然数,s≤m)时,如果先取者要拿走s个物品,如果后取者拿走x(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
结论当n=(m+1)*r+s(r为任意自然数,s≤m)时先手胜利,当n%(m+1)==0时后手胜利。
example
HDU 1846
1、 本游戏是一个二人游戏;
2、 有一堆石子一共有n个;
3、 两人轮流进行;
4、 每走一步可以取走1…m个石子;
5、 最先取光石子的一方为胜;
先手胜输出first后手胜输出second

		if(n%(m+1) != 0){
            cout<<"first"<<endl;
        }
        else{
            cout<<"second"<<endl;
        }

尼姆博弈论(Nimm Game)

问题模型:有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
解决思路:用(a,b,c)表示某种局势,显然(0,0,0)是第一种奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。

搞定这个问题需要把必败态的规律找出:(a,b,c)是必败态等价于a ^ b ^ c=0(^表示异或运算)。 证明略—>尼姆博弈的证明
所以将一个非奇异局势转化为奇异局势的方法为

  1. 使a = b ^ c
  2. 使b = a ^ c
  3. 使c = a ^ b

结论当a ^ b ^ c = 0时,先手必败
example

威佐夫博奕(Wythoff Game)

问题模型:问题模型:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
解决思路
设(ai,bi)(ai ≤bi ,i=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)。那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,…,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。

结论t= b[k]-a[k],如果a[k] = (t*(1+√5)/2) (b[k] > a[k])则该局势为奇异局势,先手输
example

斐波那契博弈(Fibonacci Nim Game)

Sprague-Grundy定理(SG定理)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值