驻点是函数的一阶导数为零的点。对于多元函数,驻点是所有一阶偏导数都为零的点。
一元函数驻点:令函数y=f(x),若f'(x0)=0,则x0是驻点。
二元函数驻点:令函数y=f(x,y)的两个一阶偏导都为0的点。
例如:
函数 f(x,y) = x*x*x - 4*x*x + 2*x*y - y*y;
解方程组
fx(x,y) = 3*x*x - 8*x + 2*y = 0 fy(x,y) = 2*x - 2*y = 0;
可得驻点为(0,0)(2,2)
极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。
极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)
一元函数:
设函数 f(x) 在 x0 的某一邻域内可导,且 f'(x0) = 0 (或 f(x) 在 x0 处连续,但 f'(x0) 不存在.)
(1) 若当 x 经过 x0 时,f'(x) 由“+”变“-”,则函数在 x0 处取得极大值.
(2) 若当 x 经过 x0 时,f'(x) 由“-”变“+”,则函数在 x0 处取得极小值.
(3) 若当 x 经过 x0 时,f'(x) 不变号,则 x0 不是极值.
设函数 f(x) 在 x0 处有f''(x)
0,且f'(x0) = 0.
(1) 当f''(x0)<0时,函数在 x0 处取得极大值.
(2) 当f''(x0)>0时,函数在 x0 处取得极小值.
二元函数:判断驻点
f(x,y)的二阶导数为 fxx(x,y),fxy(x,y),fyy(x,y)。
设 A = fxx(x0,y0) , B = fxy(x0,y0), C = fyy(x0,y0) ;
在驻点(x0,y0) 处有如下结论:
如上式 函数 f(x,y) = x*x*x - 4*x*x + 2*x*y - y*y 的二阶偏导为
fxx(x,y) = 6*x - 8; fxy(x,y) = 2; fyy(x,y) = -2;
在驻点(0,0)处,A = -8,B = 2, C = -2 。A*C - B*B = 12 > 0 , A < 0 , 故(0,0)为极大值点。
在驻点(2,2)处,A = 4,B = 2, C = -2 。A*C - B*B = -12 < 0 , A < 0 , 故(2,2)不是极值点。
Tip: 可导函数的极值点必定是它的驻点,但反过来,函数的驻点却不一定是极值点。