驻点(稳定点,临界点,要求平滑) 极值点 拐点 保号性及证明

87 篇文章 ¥119.90 ¥299.90
本文详细讲解了数学分析中的关键概念,包括驻点、极值点和拐点的定义及其性质。讨论了驻点必须是一阶导数为0的点,极值点的必要条件是一阶导数为0,但不充分,而拐点可能是二阶导数为0或不存在的点。同时,阐述了保号性的证明,指出函数在某点的值正负决定了其附近一定范围内的值的正负。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 

驻点(稳定点,临界点,要求平滑)

极值点

拐点

保号性及证明


驻点(稳定点,临界点,要求平滑

一阶导数为0的点,就是驻点。所以求驻点,就是求一阶导数为0的点。至于不可导点,当然就不可能是驻点了。

极值点

定义:在 x 的邻域内,f(x) 的值总是大于等于或小于等于其他值,则  x 为极值点

性质:

若极值点一阶可导,则导数为零,此时极值点为驻点。

若极值点二阶可导,则一阶导数为零,二阶导数为正(极小值)或者为负(极大值)

找出所有一阶导数为0的点和不可导点。对这些点进行进一步的分析。注意一点,一阶导数为0或一阶导数不存在只是极值点的一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值