监督学习算法和非监督学习算法的区别、优劣及使用场景

本文介绍了监督学习和非监督学习的区别,包括它们的定义、优缺点以及在实际问题中的应用。监督学习依赖于标记数据,用于预测和分类,如决策树和神经网络;而非监督学习则挖掘未标记数据的内在结构,如K均值聚类和主成分分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监督学习算法和非监督学习算法是机器学习中两种常见的方法,它们在解决问题时有着不同的特点和适用场景。

  1. 监督学习算法:

    • 定义:监督学习算法使用带标签的训练数据,其中每个样本都有一个已知的标签或输出值。算法的目标是学习如何从输入数据中预测或映射到输出标签。
    • 优点
      • 可以利用已知的标签信息进行训练,使得模型具有较好的泛化能力。
      • 可以解决分类和回归等各种类型的问题。
    • 缺点
      • 对于大量标记数据的依赖性较强,数据标注需要大量的人工工作。
    • 使用场景:适用于需要预测或分类的问题,如垃圾邮件检测、图像识别、房价预测等。
    • 示例:支持向量机(Support Vector Machine)、决策树(Decision Tree)、神经网络(Neural Network)等。
  2. 非监督学习算法:

    • 定义:非监督学习算法使用未标记的训练数据,目标是发现数据中的模式、结构或隐藏信息,而不需要事先给出标签或输出值。
    • 优点
      • 可以发现数据中的潜在结构和模式,有助于数据的理解和探索。
      • 不需要大量的标记数据,可以直接利用未标记数据进行训练。
    • 缺点
      • 对于结果的解释性通常较差,因为没有预先定义的标签。
    • 使用场景:适用于聚类、降维、异常检测等问题,如客户分群、文档主题建模、异常交易检测等。
    • 示例:K均值聚类(K-means Clustering)、主成分分析(Principal Component Analysis,PCA)、自编码器(Autoencoder)等。

举例说明:
假设我们有一些关于顾客购买行为的数据,包括购买商品的种类、购买时间等信息。如果我们想要预测下一个顾客购买的商品类别(比如预测下一个顾客是否购买了某种商品),那么这是一个监督学习问题,因为我们有标记的购买历史数据可以用于训练模型。可以使用监督学习算法如决策树、随机森林等来解决这个问题。

另一方面,如果我们想要探索数据中的模式,比如将顾客分成不同的群组以了解他们的购买偏好,而不考虑预测特定商品的购买情况,那么这是一个非监督学习问题。可以使用非监督学习算法如K均值聚类、主成分分析等来解决这个问题,从而发现数据中的隐藏结构。

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喝凉白开都长肉的大胖子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值