
深度学习
文章平均质量分 50
喝凉白开都长肉的大胖子
只有苦练七十二变,方能笑对八十一难
展开
-
train 代码和 test代码的主要区别在哪
train过程是一个包括探索、经验收集、奖励计算和策略更新的动态过程,旨在通过多次的环境交互来优化代理的行为。test过程则主要是评估代理在没有策略更新的情况下如何根据现有策略执行任务,并记录各种性能指标。在代码层面,train中有更多的涉及到的数据存储、奖励标准化和策略更新的操作,而test则侧重于计算各类评估指标并输出结果。原创 2024-11-05 15:17:16 · 956 阅读 · 0 评论 -
深度学习中tensorflow和pytorch框架有什么不同,该如何选择
总之,选择 TensorFlow 还是 PyTorch 主要取决于你的具体需求、使用场景和个人偏好。两者都是非常强大的深度学习框架,各自有其优势。TensorFlow 和 PyTorch 是两种流行的深度学习框架,各有优缺点和特定的使用场景。原创 2024-06-06 21:38:31 · 1478 阅读 · 0 评论 -
DDPG 和DQN的区别是什么
特性DQNDDPG适用动作空间离散连续算法类型值函数(Q值)策略梯度(确定性策略)+ Q值网络结构单个Q网络 + 目标网络策略网络 + Q网络 + 策略目标网络 + Q目标网络动作选择ε-greedy策略确定性策略 + 探索噪声训练方法经验回放池经验回放池算法目标最大化Q值最大化累积回报DQN适用于动作空间有限且离散的问题,通过学习Q值函数来选择最优动作。DDPG适用于动作空间连续的问题,通过学习策略网络和Q值网络来选择最优动作。原创 2024-06-05 16:30:26 · 1499 阅读 · 0 评论 -
@dataclass装饰器的作用
这段代码实现了一个简单的经验回放缓冲区,用于存储和抽样训练数据,以供深度学习模型进行训练。类生成初始化方法和字符串表示方法,而无需手动编写。: 这是一个装饰器,用于自动为类生成特殊方法,例如。类生成初始化方法和字符串表示方法,而无需手动编写。: 这是一个装饰器,用于自动为类生成特殊方法,例如。的类,它是一个用于存储经验回放数据的缓冲区。这段代码定义了一个名为。原创 2024-05-03 11:34:12 · 446 阅读 · 0 评论 -
监督学习算法和非监督学习算法的区别、优劣及使用场景
假设我们有一些关于顾客购买行为的数据,包括购买商品的种类、购买时间等信息。如果我们想要预测下一个顾客购买的商品类别(比如预测下一个顾客是否购买了某种商品),那么这是一个监督学习问题,因为我们有标记的购买历史数据可以用于训练模型。另一方面,如果我们想要探索数据中的模式,比如将顾客分成不同的群组以了解他们的购买偏好,而不考虑预测特定商品的购买情况,那么这是一个非监督学习问题。监督学习算法和非监督学习算法是机器学习中两种常见的方法,它们在解决问题时有着不同的特点和适用场景。原创 2024-04-01 16:26:23 · 1133 阅读 · 0 评论 -
支持向量机(Support Vector Machine,SVM)的功能及用法
支持向量机(Support Vector Machine,SVM)是一种监督学习算法,主要用于分类和回归分析。其基本思想是找到一个超平面,将不同类别的样本分开,并使得该超平面到最近的样本点的距离(即支持向量)最大化。SVM在许多实际问题中都表现出很好的性能,并且在处理高维数据和非线性数据时也有很好的效果。在这个示例中,我们使用Scikit-learn库加载了一个经典的鸢尾花数据集。然后,我们将数据集划分为训练集和测试集,并使用SVM模型进行训练。最后,我们使用测试集对模型进行评估,计算模型的准确率。原创 2024-04-01 16:19:28 · 1066 阅读 · 0 评论 -
softmax函数的功能及用法
Softmax函数的用法通常是在神经网络的输出层中,用于将网络的原始输出转换为对应于每个类别的概率。Softmax函数将每个输入值转换为介于 0 到 1 之间的实数,并且确保所有输出值的总和为 1,因此可以看作是一种归一化函数。在实际应用中,Softmax函数是很常见的,因为它提供了一种直观的方式来解释神经网络的输出,并且适用于许多分类问题。其中,( e ) 是自然对数的底(欧拉数),( z_i ) 是输入向量 ( z ) 的第 ( i ) 个元素。给定一个输入向量 ( z = (z_1, z_2, …原创 2024-04-01 15:54:02 · 1133 阅读 · 0 评论 -
函数img.resize()
是 PIL 库中的一个函数,用于调整图像的大小。该函数接受一个元组作为参数,指定调整后的目标大小。调整后的图像可能会被拉伸或压缩以适应新的尺寸。这个函数允许你根据需要调整图像的大小,并提供了多种方式来处理图像缩放时可能出现的失真问题。参数,则函数会根据原始图像的宽高比自动调整另一个维度的大小,保持图像不失真。如果只指定其中一个维度的大小,而将另一个维度设为 0 或使用。分别是调整后的目标宽度和高度。是一个 PIL 图像对象,原创 2024-03-25 19:33:14 · 950 阅读 · 0 评论 -
pytorch利用保存的模型进行预测
准备输入数据:根据模型的输入要求,准备待预测的数据。这可能包括数据预处理、转换和标准化等步骤。处理预测结果:根据具体任务的需要,对预测结果进行后处理,如转换为概率分布、取最大值等。方法将模型设置为评估模式。这会关闭一些训练时使用的特定层,如Dropout。在PyTorch中,可以使用保存的模型进行预测。输出预测结果:根据任务需求,将预测结果进行展示或保存。进行预测:将准备好的数据输入到模型中,通过调用。预测结果将是一个张量。函数加载保存的模型文件。设置模型为评估模式:通过调用。原创 2024-03-25 19:22:09 · 1045 阅读 · 0 评论 -
【from PIL import Image】PIL库和Image的功能及用法
是 Python 中导入 PIL 库中的 Image 模块。PIL 是 Python Imaging Library 的缩写,它是 Python 中用于图像处理的一个强大的库。而 Image 模块则是 PIL 库中的一个子模块,提供了处理图像的各种功能。这些只是 PIL 库和 Image 模块提供的一小部分功能和用法。总的来说,PIL 库是一个功能强大的图像处理工具,可以帮助你对图像进行各种操作,从简单的图像处理到复杂的图像分析,都可以在这个库中找到相应的工具和函数。原创 2024-03-25 18:00:56 · 7102 阅读 · 0 评论 -
笛卡尔坐标Cartesian coordinates
笛卡尔坐标是一种用于描述平面或空间中点位置的坐标系统。它是由法国数学家笛卡尔在17世纪提出的,因此得名。笛卡尔坐标系统通过引入直角坐标系来描述点的位置,具体而言,每个点都可以用一个有序数对(在二维情况下)或有序三元组(在三维情况下)来表示,分别表示在 x 轴、y 轴和 z 轴上的坐标值。与笛卡尔坐标系相比,这些坐标系在某些情况下更方便描述某些特定的问题,例如,与笛卡尔坐标系相比,极坐标系。相比,其他常见的坐标系还包括。原创 2024-03-21 16:45:16 · 1135 阅读 · 0 评论 -
self-attention mechanism DQN 算法和DQN算法的区别在哪
总的来说,self-attention mechanism DQN 算法通过引入自注意力机制,算法之间的主要区别在于其在网络结构中引入了。提高了网络的泛化能力。原创 2024-03-21 10:51:16 · 420 阅读 · 0 评论 -
解释代码“device = torch.device(‘cuda‘ if torch.cuda.is_available() else ‘cpu‘)”
这段代码的作用是设置设备,具体解释如下:- `torch.device('cuda' if torch.cuda.is_available() else 'cpu')`:这是一个Python表达式,用于创建一个PyTorch设备对象,以指定在哪个设备上执行计算。它的作用是检查当前系统是否支持CUDA(即是否有可用的GPU),如果支持CUDA,则将设备设置为GPU('cuda'),否则设置为CPU('cpu')。- `torch.cuda.is_available()`:这个函数用于检查系统中是否有可原创 2024-03-15 11:04:44 · 8066 阅读 · 0 评论 -
深度强化学习中常用“库”的作用
这段代码导入了一些Python库和自定义模块,以及定义了一些变量和对象。这些导入语句用于引入所需的功能和库,以便在后续代码中使用它们。原创 2024-03-15 11:01:31 · 479 阅读 · 0 评论 -
解释函数“f = f.permute()”
函数用于对张量的维度进行重新排列。具体来说,它会根据给定的参数重新排列张量的维度顺序。这个操作可以用来实现维度的转置、交换维度的顺序等。函数对张量的维度进行重新排列,将原来的第0维和第1维进行了交换。函数的作用,它可以根据指定的参数对张量的维度进行重新排列。,即原来的行变成了列,原来的列变成了行。,而重新排列维度后的张量变成了。这段代码创建了一个二维张量。可以看到,原始张量的形状是。以下是一个示例说明如何使用。在PyTorch中,原创 2024-03-14 21:19:04 · 459 阅读 · 0 评论 -
解释函数“unsqueeze”
在Python中,"unsqueeze"函数通常用于处理张量,它可以在指定的位置(维度)添加一个新的维度,这个维度的大小为1。这个操作在PyTorch、TensorFlow等深度学习框架中都有对应的实现。这就是"unsqueeze"函数的作用,它在指定位置增加了一个维度。意味着在第0个维度(索引从0开始)添加新的维度。,而添加新维度后的张量变成了一个二维的张量,形状为。函数在维度0上添加了一个新的维度。可以看到,原始张量是一个一维的向量。这段代码首先创建了一个一维张量。原创 2024-03-14 21:09:41 · 1609 阅读 · 0 评论 -
深度学习中的“张量”怎么理解呢?
在深度学习中,神经网络的输入、输出以及模型参数通常都是张量形式的数据。张量的并行计算是深度学习框架中的核心特性之一,允许在GPU或者其他加速硬件上进行高效的数值计算。张量的形状可以根据需要进行调整,通过改变维度的大小或者添加/删除维度来适应不同的计算需求。张量可以是零维(标量)、一维(向量)、二维(矩阵)、三维或者更高维度的数据结构。张量支持各种数学运算,例如加法、减法、乘法、除法、矩阵乘法、转置等。张量中的元素可以是不同的数据类型,例如整数、浮点数、布尔值等。张量(tensor)原创 2024-03-14 20:58:50 · 828 阅读 · 0 评论 -
下载指定版本的pytorch
https://download.pytorch.org/whl/torch_stable.htmlhttps://blog.csdn.net/wusuoweiieq/article/details/132773977原创 2024-03-13 15:04:27 · 909 阅读 · 0 评论 -
运行python程序除了在终端传入参数外,还可以怎么传入参数
python的传参方式原创 2024-03-13 11:25:40 · 650 阅读 · 0 评论 -
_pickle.UnpicklingError: invalid load key, ‘v‘
序列化和反序列化的版本不匹配:pickle模块在不同的Python版本之间可能存在不兼容性。如果你在一个Python版本中使用pickle进行序列化,然后在另一个版本中尝试反序列化,就可能会出现这个错误。使用了不受信任的数据:pickle模块可以执行任意代码,因此在反序列化之前必须确保数据的来源可信。数据损坏:如果序列化的数据在传输或存储过程中发生了损坏,就可能导致反序列化时出现无效的加载键错误。是一个Python中的错误,它表示在使用pickle模块进行反序列化时遇到了无效的加载键’v’。原创 2024-03-13 09:48:07 · 7234 阅读 · 0 评论 -
解释“RNN encode-decode”
RNN encode-decode” 涉及使用循环神经网络(Recurrent Neural Network,RNN)来执行编码和解码操作。这种结构常用于处理序列数据,例如自然语言处理、语音识别和时间序列预测等任务。这种结构在机器翻译中很常见,其中一个序列(例如,一种语言的句子)被编码为一个状态,然后解码器使用该状态生成另一个序列(例如,另一种语言的对应句子)。这个整体过程形成了一个“encode-decode”框架,通过 RNN 捕捉输入序列的上下文信息,然后使用这些信息生成输出序列。原创 2024-03-11 17:22:59 · 629 阅读 · 0 评论 -
【note: This is an issue with the package mentioned above, not pip.】
安装gym时出现问题,note: This is an issue with the package mentioned above, not pip.选择了离线下载.whl文件的形式安装。缺失了某些依赖模块,所以安装报错。原创 2023-12-01 21:00:32 · 954 阅读 · 0 评论 -
tensorflow和pytorch都分别存在CPU和GPU版本
TensorFlow和PyTorch都有专门为CPU和GPU优化的版本。它们之间的代码在某些方面有一些不同,但通常可以相对容易地进行转换。上述示例仅仅是一个简单的转换示例,实际转换可能会涉及到更多的细节和调整。在进行转换时,建议参考官方文档和示例代码,以确保正确地迁移模型和训练逻辑。原创 2023-11-25 20:28:40 · 826 阅读 · 0 评论 -
tensorflow和pytorch的联系与区别
PyTorch: 使用动态图形式的API,更贴近Python编程习惯。模型的定义和训练是自然的Python代码。TensorFlow: TensorFlow 2.x引入了Keras高级API,使得模型定义和训练更加容易,类似于PyTorch的风格。TensorFlow 1.x版本中,定义模型的方式相对较为繁琐。原创 2023-11-25 20:27:17 · 2546 阅读 · 0 评论 -
GPU版本的代码怎么转换成CPU版本呢?
在将代码转换为CPU版本时,你可能需要重新设计算法以更好地适应CPU的串行性能。在转换为CPU版本时,你可能需要重新考虑内存访问模式,使用适合CPU架构的数据结构和缓存策略。2.线程和任务调度: GPU代码通常使用线程块和网格的概念进行任务调度,而CPU代码可能使用不同的线程和进程管理方法。总体来说,将GPU版本的代码转换为CPU版本可能是一项复杂的任务,取决于原始代码的复杂性和特殊性。将GPU版本的代码转换为CPU版本通常需要考虑一些关键因素,因为GPU和CPU在架构和并行计算方面有很大的差异。原创 2023-11-25 20:21:26 · 878 阅读 · 0 评论 -
深度学习与深度强化学习
总体而言,卷积层和全连接层在深度学习模型中扮演着不同但相辅相成的角色,卷积层用于提取特征并保留空间信息,而全连接层用于整合和学习这些特征的高级表达。1.卷积核数量: 通常,初始的卷积层使用较少的卷积核,然后随着网络的深度逐渐增加卷积核的数量。对于较小的特征,可以选择小一些的卷积核,而对于更大的特征,可以选择更大的卷积核。2.参数共享: 卷积层通过卷积核在输入数据上滑动来提取特征,同时在整个输入数据区域内使用相同的权重(参数共享),这减少了模型的参数数量,提高了模型的效率,并且有助于捕获数据的局部模式。原创 2023-11-17 10:33:35 · 431 阅读 · 0 评论 -
深度学习中激活函数怎么选择?
表达式: ( \text{Swish}(x) = x \cdot \sigma(\beta x) ),其中 ( \sigma ) 是 Sigmoid 函数。表达式: ( \text{Leaky ReLU}(x) = \max(\alpha x, x) ),其中 ( \alpha ) 是一个小的正数。表达式: ( \text{PReLU}(x) = \max(\alpha x, x) ),其中 ( \alpha ) 是一个可学习的参数。表达式: ( \text{ReLU}(x) = \max(0, x) )原创 2023-11-12 09:24:33 · 432 阅读 · 0 评论 -
深度学习模型加载和测试
请注意,这只是一个简单的示例。在实际应用中,你可能需要处理更复杂的输入数据、进行后处理、可视化结果等。此外,确保你的模型和输入数据的格式正确匹配,以避免出现错误。请注意,不同的深度学习框架可能有略微不同的API和步骤。使用 TensorFlow 的 SavedModel 或 PyTorch 的保存和加载方式也会有相似的思路。确保你的输入数据与模型期望的输入格式相匹配。在这个例子中,我们简单地生成了一些示例数据。这可能涉及将输出转换为人类可读的形式,或者执行进一步的分析。在这个示例中,我们将。原创 2023-11-12 09:22:39 · 281 阅读 · 0 评论 -
深度学习模型加载和测试
加载和测试深度学习模型通常涉及以下步骤:模型加载、准备输入数据、进行推理或预测,以及解释结果。我将使用 TensorFlow 和 Keras 作为示例框架进行说明。请注意,不同的深度学习框架可能有略微不同的API和步骤。原创 2023-11-11 10:22:31 · 236 阅读 · 0 评论 -
深度学习训练后模型的保存格式是什么,请举例说明
深度学习模型在训练后通常以特定的文件格式保存,以便在需要时重新加载和使用。原创 2023-11-11 10:18:36 · 1816 阅读 · 0 评论 -
利用深度强化学习求解车辆调度问题时的框架该怎么样设计?
请注意,车辆调度问题的具体形式可能因应用场景的不同而有所不同,因此需要根据具体问题的要求来定制和优化上述框架。同时,深度强化学习在实际应用中可能需要大量的计算资源和数据,因此在项目的早期阶段应仔细考虑可行性和资源需求。选择一个适当的深度强化学习算法,如深度Q网络(DQN)、双DQN、深度确定性策略梯度(DDPG)等。实现适当的探索策略,以确保智能体在学习过程中能够探索新的行动和状态,而不仅仅是利用已知信息。定义行动空间,即车辆可以采取的操作,如选择任务、移动到不同的位置等。原创 2023-11-02 09:24:46 · 496 阅读 · 1 评论 -
Double DQN是什么,具体有什么作用,是怎么运行的
Double DQN原创 2023-11-02 09:17:33 · 556 阅读 · 0 评论 -
深度强化学习中的神经网络部分的作用是什么?一般如何选择合适的神经网络呢?
1.值函数近似(Value Function Approximation):神经网络可以用于近似状态值函数或动作值函数,如价值迭代算法中的值函数,或者Q-学习中的动作值函数。6.激活函数:根据问题的性质,选择合适的激活函数。在深度强化学习中,神经网络部分通常用于实现值函数近似或策略近似,以帮助智能体学习如何在一个环境中做出决策以获得最大的累积奖励。7.网络架构:可以根据问题的要求选择不同的神经网络架构,如循环神经网络(RNN)用于处理序列数据,或者深度卷积神经网络(DCNN)用于处理图像数据。原创 2023-10-31 11:25:39 · 1245 阅读 · 0 评论 -
深度学习中全连接层是什么?
此外,全连接层在处理高维数据时可能会导致模型的参数过多,因此在一些应用中,可以考虑使用其他类型的层来减少参数数量,如全连接层之前的卷积层和池化层。它的主要作用是将输入的所有神经元与输出的所有神经元相互连接,每个输入神经元与每个输出神经元都存在连接,因此称为“全连接”。在深度学习的卷积神经网络(Convolutional Neural Network,CNN)中,全连接层通常出现在网络的最后一层,用于将卷积和池化层提取的特征映射到最终的分类输出。这些层用于将输入数据映射到输出数据,逐层传递以学习特征的表示。原创 2023-10-31 11:25:07 · 888 阅读 · 0 评论