
强化学习
文章平均质量分 66
喝凉白开都长肉的大胖子
只有苦练七十二变,方能笑对八十一难
展开
-
常见的几种多智能体强化学习算法
多智能体强化学习(Multi-Agent Reinforcement Learning, MARL,旨在解决多个智能体在共享环境中通过与环境和其他智能体交互来学习最优策略的问题。原创 2025-05-21 15:58:32 · 332 阅读 · 0 评论 -
强化学习中,frames(帧)和 episodes(回合)
【代码】强化学习中,frames(帧)和 episodes(回合)原创 2025-05-17 14:07:32 · 1054 阅读 · 0 评论 -
“frame stacking”---帮助强化学习稳定提升和收敛技巧
Frame stacking” 是一种在处理视频或序列数据时常用的技术,尤其在计算机视觉和强化学习领域。这个技术的基本思想是将连续的多帧图像组合在一起作为一个整体来处理,以捕捉时间维度上的动态信息。原创 2025-05-11 15:00:05 · 338 阅读 · 0 评论 -
TensorBoard日志
要查看 TensorBoard 的日志,你需要遵循以下几个步骤来确保你的日志文件被正确生成并能够通过 TensorBoard 查看。原创 2025-05-01 14:32:19 · 313 阅读 · 0 评论 -
解释强化学习中的batch, epoch, episode有什么区别与联系,分别有什么作用
在强化学习(Reinforcement Learning, RL)中,、 和 是几个关键概念,它们各自有不同的含义和作用。下面是对这三个概念的详细解释及其区别与联系:定义:作用:示例:定义:作用:示例:定义:作用:示例:层次不同:用途不同:定义方式不同:共同目标:相互依赖:动态关系:、 和 在强化学习中扮演着不同的角色,但它们之间又存在紧密的联系,共同推动着强化学习算法的学习过程。原创 2024-12-10 15:46:39 · 1857 阅读 · 0 评论 -
model based和model free
相反,它直接通过与环境交互并从经验中获得反馈来学习一个策略或值函数。智能体通过试探性的方法(探索)学习最佳行为,而不需要了解环境的内在规律。,该模型可以描述从当前状态执行某个动作后,智能体将转移到哪个新状态以及该动作的奖励。通过学习或已知的环境模型,智能体能够预测未来的状态和奖励,从而做出更加合理的决策。两者在强化学习中各有优劣,选择哪种方法通常取决于环境的复杂性、可用的计算资源和训练效率的需求。(无模型的)是两种不同的学习方法,它们的核心区别在于是否利用环境的模型来进行决策或学习。原创 2024-11-29 15:58:44 · 1180 阅读 · 0 评论 -
train 代码和 test代码的主要区别在哪
train过程是一个包括探索、经验收集、奖励计算和策略更新的动态过程,旨在通过多次的环境交互来优化代理的行为。test过程则主要是评估代理在没有策略更新的情况下如何根据现有策略执行任务,并记录各种性能指标。在代码层面,train中有更多的涉及到的数据存储、奖励标准化和策略更新的操作,而test则侧重于计算各类评估指标并输出结果。原创 2024-11-05 15:17:16 · 956 阅读 · 0 评论 -
DDPG 和DQN的区别是什么
特性DQNDDPG适用动作空间离散连续算法类型值函数(Q值)策略梯度(确定性策略)+ Q值网络结构单个Q网络 + 目标网络策略网络 + Q网络 + 策略目标网络 + Q目标网络动作选择ε-greedy策略确定性策略 + 探索噪声训练方法经验回放池经验回放池算法目标最大化Q值最大化累积回报DQN适用于动作空间有限且离散的问题,通过学习Q值函数来选择最优动作。DDPG适用于动作空间连续的问题,通过学习策略网络和Q值网络来选择最优动作。原创 2024-06-05 16:30:26 · 1499 阅读 · 0 评论 -
强化学习算法中on-policy和off-policy
特点On-PolicyOff-Policy策略类型行为策略和目标策略相同行为策略和目标策略不同策略稳定性依赖于当前策略的探索和利用平衡可使用不同策略进行探索,目标策略更灵活样本效率样本效率较低,需要大量的探索数据样本效率高,可利用离线数据和多策略数据计算复杂性相对简单,直接更新当前策略复杂度较高,需要处理行为策略和目标策略的差异代表算法Q-Learning, DQN, 重要性采样, 经验回放优缺点简单直接,可能陷入局部最优样本效率高,灵活性强,但可能引入估计偏差。原创 2024-05-28 12:19:40 · 1825 阅读 · 0 评论 -
强化学习中model-free和model-based
特点Model-Free依赖环境模型是否学习方法学习环境模型并进行规划直接学习策略或价值函数计算复杂度较高,需要维护和利用环境模型较低,不需要显式的环境模型数据效率较高,通过模型可以进行模拟和规划较低,需要大量的交互数据适用场景环境模型已知或可估计环境复杂或难以建模示例算法动态规划、MCTS、Dyna-Q等Q学习、SARSA、DQN、策略梯度法等Model-based 和 model-free 强化学习算法各有优缺点,选择哪种方法取决于具体的应用场景和需求。原创 2024-05-27 20:00:41 · 1401 阅读 · 0 评论 -
@dataclass装饰器的作用
这段代码实现了一个简单的经验回放缓冲区,用于存储和抽样训练数据,以供深度学习模型进行训练。类生成初始化方法和字符串表示方法,而无需手动编写。: 这是一个装饰器,用于自动为类生成特殊方法,例如。类生成初始化方法和字符串表示方法,而无需手动编写。: 这是一个装饰器,用于自动为类生成特殊方法,例如。的类,它是一个用于存储经验回放数据的缓冲区。这段代码定义了一个名为。原创 2024-05-03 11:34:12 · 446 阅读 · 0 评论 -
运筹优化领域内精确算法、启发式算法和深度强化学习算法的优劣
综上所述,精确算法适用于对解的精度要求较高且问题规模较小的情况;启发式算法适用于处理大规模和复杂度较高的问题,并且能够在较短时间内找到接近最优解的解;深度强化学习算法适用于处理具有不确定性和复杂环境的问题,并且能够通过学习来不断优化策略。选择合适的算法取决于问题的特点、求解需求和资源限制。在运筹优化领域内,精确算法、启发式算法和深度强化学习算法各有优劣。原创 2024-04-19 16:01:22 · 1491 阅读 · 0 评论 -
深度强化学习调参技巧
综上所述,深度强化学习调参是一个非常复杂的任务,需要结合具体的任务需求和算法特点来进行调整。通过不断地尝试和实验,结合以上的调参技巧,可以提高模型的性能和训练效果。调整神经网络的结构,包括隐藏层的数量、每层的神经元数量、激活函数的选择等。通常来说,增加网络的深度和宽度有助于提高模型的表现,但也可能增加训练时间和计算成本。不同的环境和任务对算法的表现有着不同的要求,因此需要根据具体情况选择合适的环境和任务。在深度强化学习中,调参是一个非常重要的任务,它直接影响到模型的性能和收敛速度。原创 2024-04-04 10:04:20 · 924 阅读 · 0 评论 -
笛卡尔坐标Cartesian coordinates
笛卡尔坐标是一种用于描述平面或空间中点位置的坐标系统。它是由法国数学家笛卡尔在17世纪提出的,因此得名。笛卡尔坐标系统通过引入直角坐标系来描述点的位置,具体而言,每个点都可以用一个有序数对(在二维情况下)或有序三元组(在三维情况下)来表示,分别表示在 x 轴、y 轴和 z 轴上的坐标值。与笛卡尔坐标系相比,这些坐标系在某些情况下更方便描述某些特定的问题,例如,与笛卡尔坐标系相比,极坐标系。相比,其他常见的坐标系还包括。原创 2024-03-21 16:45:16 · 1135 阅读 · 0 评论 -
self-attention mechanism DQN 算法和DQN算法的区别在哪
总的来说,self-attention mechanism DQN 算法通过引入自注意力机制,算法之间的主要区别在于其在网络结构中引入了。提高了网络的泛化能力。原创 2024-03-21 10:51:16 · 420 阅读 · 0 评论 -
环境ENV
强化学习环境编写。原创 2024-03-08 21:30:01 · 384 阅读 · 0 评论 -
【强化学习中alpha和gamma0】
其中,\(Q(s, a)\) 是状态动作对 \((s, a)\) 的Q值,\(r\) 是立即的奖励,\(s'\) 是下一个状态,\(a'\) 是在\(s'\)处选择的最佳动作,\(\gamma\) 是折扣因子。总的来说,`alpha` 和 `gamma` 是在强化学习算法中需要预先设定的超参数,它们对算法的性能和学习过程有着重要的影响。在强化学习中,`alpha`(α)和`gamma`(γ)分别代表学习率和折扣因子,它们是强化学习算法中的两个重要的超参数。2. **折扣因子 (`gamma`):**原创 2024-03-08 09:40:19 · 647 阅读 · 0 评论 -
强化学习中动作价值函数和状态价值函数的联系区别?
在强化学习中,动作价值函数(Q函数)和状态价值函数(V函数)都是值函数,用于评估在不同状态或状态动作对下的值。原创 2024-03-06 21:28:57 · 2065 阅读 · 0 评论 -
强化学习中Epsilon代表什么
在强化学习中,Epsilon(ε)通常代表一个探索率(exploration rate)。探索率是强化学习算法中一个关键的超参数,用于平衡探索(exploration)和利用(exploitation)的权衡。总的来说,Epsilon 在强化学习中用于调节探索和利用之间的平衡,它是一个权衡的关键参数。Epsilon-Greedy是其中一种常见的策略,但也有其他方法来处理探索和利用的问题,如 Softmax 策略等。原创 2024-03-06 21:22:15 · 2087 阅读 · 2 评论 -
强化学习中的alpha和gamma分别代表什么
是在强化学习算法中需要预先设定的超参数,它们对算法的性能和学习过程有着重要的影响。(γ)分别代表学习率和折扣因子,它们是强化学习算法中的两个重要的超参数。值的选择取决于具体问题和环境。原创 2024-03-06 21:19:20 · 1488 阅读 · 0 评论 -
【 This error originates from a subprocess, and is likely not a problem with pip.】
按照以往的经验,这个保没有导入,只需要把这个包导入到环境中即可解决,于是我pip了一下但是,很遗憾,显示了一堆错误“failed……”于是我搜了“This error originates from a subprocess, and is likely not a problem with pip.出现了下面的推文按照解决方法1尝试。原创 2023-12-16 20:57:30 · 3158 阅读 · 4 评论 -
强化学习中训练阶段和测试阶段的区别,在代码上是怎么体现的
在强化学习中,训练阶段和测试阶段有一些关键的区别。这主要涉及到探索与利用的平衡、环境交互、以及模型参数更新等方面。以下是训练阶段和测试阶段的主要区别以及在代码中可能如何体现:训练阶段:1.探索性行为(Exploration): 在训练阶段,智能体通常会采取一些探索性的行为,以发现环境中的未知信息。这有助于积累更多的经验,提高策略的鲁棒性。2.经验回放(Experience Replay): 为了增加样本的有效性和稳定性,训练阶段通常使用经验回放机制,将之前的经验重新用于训练。原创 2023-12-16 17:35:48 · 1783 阅读 · 0 评论 -
深度学习与深度强化学习
总体而言,卷积层和全连接层在深度学习模型中扮演着不同但相辅相成的角色,卷积层用于提取特征并保留空间信息,而全连接层用于整合和学习这些特征的高级表达。1.卷积核数量: 通常,初始的卷积层使用较少的卷积核,然后随着网络的深度逐渐增加卷积核的数量。对于较小的特征,可以选择小一些的卷积核,而对于更大的特征,可以选择更大的卷积核。2.参数共享: 卷积层通过卷积核在输入数据上滑动来提取特征,同时在整个输入数据区域内使用相同的权重(参数共享),这减少了模型的参数数量,提高了模型的效率,并且有助于捕获数据的局部模式。原创 2023-11-17 10:33:35 · 431 阅读 · 0 评论 -
强化学习是一种什么样的方法,通常可以用来解决什么特点的问题
强化学习(Reinforcement Learning,简称RL)是机器学习的一个分支,其主要关注如何使智能体(Agent)通过与环境的交互学习,以在面临不同情境时做出最优决策。在强化学习中,智能体通过试错过程,通过观察环境的反馈(奖励或惩罚)来调整其行为,从而最大化累积奖励。1.序贯决策问题: 强化学习适用于需要按照一系列动作来达到某个目标的问题,这些问题通常是序列型的,每个动作的影响可能取决于之前的行为。4.奖励(Reward): 环境反馈给智能体的信号,用于评估所采取行动的好坏。原创 2023-11-17 10:25:07 · 368 阅读 · 0 评论 -
多智能体强化学习设计20231108
来自GPT的答疑原创 2023-11-08 10:00:00 · 580 阅读 · 0 评论 -
多智能体强化学习的主要流程是什么?训练方式跟单智能体有什么不同?
环境状态可以包括其他智能体的动作和状态,因此环境建模需要考虑多智能体之间的相互影响。部分可观测性:在多智能体系统中,智能体通常只能观察到部分环境信息,因为其他智能体的私有状态可能不可见。博弈论:多智能体强化学习通常涉及到博弈论的概念,因为每个智能体的动作会影响其他智能体的性能。马尔科夫性:多智能体环境可能不满足马尔科夫性,因为智能体的决策可能依赖于其他智能体的历史动作和状态。总之,多智能体强化学习需要考虑多智能体之间的相互作用和协同决策,这使得问题更加复杂,需要独特的建模和学习方法来解决。原创 2023-11-07 15:21:58 · 769 阅读 · 0 评论 -
学习强化学习疑问2023.11.7
*2.模型复杂性:**推理和训练阶段之间的区别在于推理通常涉及到将模型应用于实际环境,而训练是在仿真环境中进行的。他们可能愿意分享训练代码,以展示他们的方法是如何工作的,但不愿意公开他们的推理代码。许多研究项目的代码可能不包含推理部分,因为推理可能需要在不同的硬件或实际系统上进行,这超出了研究的范围。:虽然推理时使用的数据集不同于训练数据集,但如果它们在某种程度上与训练数据集有一定的相似性或一致性,那么模型的泛化能力可能更强。:如果你的训练数据集有限,而推理时需要适应新的数据,你可以考虑在线学习的方法。原创 2023-11-07 09:54:59 · 178 阅读 · 0 评论 -
利用深度强化学习求解车辆调度问题时的框架该怎么样设计?
请注意,车辆调度问题的具体形式可能因应用场景的不同而有所不同,因此需要根据具体问题的要求来定制和优化上述框架。同时,深度强化学习在实际应用中可能需要大量的计算资源和数据,因此在项目的早期阶段应仔细考虑可行性和资源需求。选择一个适当的深度强化学习算法,如深度Q网络(DQN)、双DQN、深度确定性策略梯度(DDPG)等。实现适当的探索策略,以确保智能体在学习过程中能够探索新的行动和状态,而不仅仅是利用已知信息。定义行动空间,即车辆可以采取的操作,如选择任务、移动到不同的位置等。原创 2023-11-02 09:24:46 · 496 阅读 · 1 评论 -
Double DQN是什么,具体有什么作用,是怎么运行的
Double DQN原创 2023-11-02 09:17:33 · 556 阅读 · 0 评论 -
强化学习和近似动态规划的区别与联系是什么,他们俩是一回事吗
是两种不同但相关的概念,它们都关注于通过学习或近似方法来解决决策问题,但它们并不是一回事。智能体根据策略选择动作,与环境互动,并根据奖励信号来调整策略以实现更好的性能。: 强化学习是一种机器学习范式,用于解决序列决策问题,其中智能体(学习代理)它通常包括将价值函数或策略函数进行近似表示,以减少计算复杂度。,因为传统动态规划在大规模问题上的计算开销很高。: 近似动态规划是一类解决决策问题的方法,它。最优的行为策略,以最大化累积奖励信号。总之,虽然强化学习和近似动态规划。等,来学习最优策略或价值函数。原创 2023-10-09 15:39:50 · 1406 阅读 · 0 评论 -
解释强化学习中model-based和model-free,online和off line,on policy 和 off policy的关系与区别
解释强化学习中model-based和model-free,online和off line,on policy 和 off policy的关系与区别。原创 2023-10-04 21:16:38 · 1684 阅读 · 0 评论 -
在用强化学习解决实时调度问题时,是否可以采用性能较好的工作站训练,然后将结果copy到性能一般的电脑上去实现‘实时调度?
要注意的是,性能较差的电脑可能在模型推理和决策过程中的速度上有一定的限制。在性能一般的电脑上,你可以**加载之前训练好的模型,并根据需要进行实时调度。**由于实时调度通常需要对模型进行推理和决策,而不需要进行大规模的训练,因此性能较差的电脑在这种情况下可能仍然能够满足要求。这可能需要进一步的技术调研和定制化的开发方案,以确保在目标设备上能够成功部署和运行实时调度系统。这种方法可以有效地利用较强的计算能力进行模型的训练,同时在实际应用中使用计算资源较有限的设备进行实时调度。例如,在实时调度的情况下,你。原创 2023-10-04 17:29:23 · 275 阅读 · 0 评论 -
在优化问题里,强化学习相比启发式算法有什么好处?
如果具有你的问题具备以上四个性质,那么你的问题采用强化学习可能会比传统的启发式算法还要好,如果你的问题不具备以上四个性质,那么你的问题应该就不适合上强化学习。因此我们并不是无脑的上强化学习,而是根据问题的性质来决定。原创 2023-09-29 17:05:50 · 611 阅读 · 0 评论 -
强化学习到底是什么?它是怎么运维的
强化学习到底是什么原创 2023-09-29 16:59:25 · 190 阅读 · 0 评论 -
安装python中tensorflow和keras==2.2.0的路程
【代码】安装python中tensorflow和keras==2.2.0的路程。原创 2023-09-27 11:34:55 · 1682 阅读 · 0 评论 -
强化学习(随想录)
奖励的稀疏性是指在强化学习任务中,智能体在与环境的交互中只偶尔或很少获得奖励信号的情况。这意味着大部分时间智能体执行动作后并不会立即获得反馈。奖励的稀疏性可以使得强化学习任务更加具有挑战性,因为智能体需要通过长期的试验和探索来找到有效的决策策略。1.奖励频率:奖励的稀疏性可以通过奖励信号的频率来定义。如果在环境中很少发生与奖励相关的事件,那么任务可以被认为是稀疏奖励任务。例如,在某个游戏中,获得正面奖励的机会只在完成一个非常复杂的子任务后才出现,这就是奖励稀疏性的一个示例。2.奖励密度。原创 2023-09-26 12:03:22 · 850 阅读 · 0 评论 -
关于总结github上的强化学习代码库(建议收藏,有需要时翻开)
游戏:DRL 在电子游戏领域取得了巨大成功,例如 AlphaGo 和 AlphaZero 在围棋、国际象棋和将棋等棋类游戏中的胜利,以及深度Q网络(Deep Q-Network,DQN)在 Atari 游戏上的表现。这只是深度强化学习应用领域的一部分示例,随着研究的进展和技术的发展,DRL 在更多领域将继续发挥重要作用。原创 2023-09-12 21:00:01 · 2699 阅读 · 0 评论 -
强化学习-天授平台
看了文档的评测,tianshou速度快过所有的强化学习库,但是功能上还不够完全,多智能体等算法未实现,可能要考虑转向ray了,ray作为一个分布式框架,就不禁让我想起了spark和mllib令我奔溃的日子。本人因为一些比赛的原因,有使用到强化学习,但是因为过于紧张与没有尝试快速复现强化学习的代码,并没有获得很好的成绩,故尝试用库进行快速复现。上面都是脚本式的运作,将参数定义在args里面相对的方便了我们进行参数的修改,涉及到修改逻辑的时候,就会比较复杂一些,在时间充足的情况下,可以考虑使用面向对象的思想。转载 2023-04-03 21:20:17 · 1036 阅读 · 0 评论