
TSP+python
TSP问题求解
喝凉白开都长肉的大胖子
只有苦练七十二变,方能笑对八十一难
展开
-
TSP问题消除子环
个人感觉看这一个就够了!!!原创 2024-03-20 15:35:43 · 483 阅读 · 0 评论 -
python中字典格式的数据支持切片吗
但是存在的问题是我将csv格式的数据读取成字典格式,每次都是全部读取,并不能像txt格式控制行数,所以想python中字典格式的数据有没有办法切片?在 Python 中,字典是一种无序的键-值对数据结构,因此字典不支持像列表或字符串那样的切片操作。字典中的元素无序排列,不能像序列(例如列表或字符串)那样按照索引进行切片。如果你想操作字典的部分内容,你可以使用循环、条件语句或字典方法来筛选和提取特定的键值对。虽然字典不支持切片操作,但上述方法可以帮助你实现对字典内容的各种筛选和提取需求。原创 2023-10-16 09:39:59 · 1040 阅读 · 0 评论 -
自适应大领域搜索算法
概念理解干货 | 自适应大邻域搜索(Adaptive Large Neighborhood Search)入门到精通超详细解析-概念篇优点、步骤和python示例代码自适应大邻域搜索算法参考文献及算法应用[1]王新. 车辆和无人机联合配送路径问题研究[D].大连海事大学,2020.[2]李婷玉. 多商户多车程同城物流配送车辆调度问题研究[D].大连理工大学,2018.[3]张梦颖. 不确定因素下路径规划问题研究[D].中国科学技术大学,2016.破坏解修复解动态调整权重并选择(自适应)。转载 2023-07-20 18:35:00 · 959 阅读 · 0 评论 -
TSP+python+混合启发式算法
本文分别尝试了使用禁忌搜索算法、粒子群算法对遗传算法进行改进,并尝试结合三种算法的思想构建遗传-禁忌搜索-粒子群算法,在以上三种改进中,遗传-禁忌搜索算法的求解效果是比较好的,当然这也与算法设计有很大的关系,不同的算子设计可能带来不同的效果,而粒子群算法改进遗传算法的效果适得其反,对比单纯用【粒子群算法求解TSP问题】的设计,在遗传算法上可能是选择操作使得进行交叉的种群多样性较少(粒子群和遗传算法都有交叉操作),进而降低了对解空间的搜索效率。学习完TSP问题求解系列,最大的感受就是。转载 2023-03-31 11:01:12 · 534 阅读 · 0 评论 -
TSP+PSO+python
旅行商人要拜访n个城市,并最终回到出发城市,要求每个城市只能拜访一次,优化目标是最小化路程之和。粒子群算法模仿鸟群觅食行为,核心思想是通过向距离食物最近的鸟集聚,不断更新速度和位置以达到最优解,即表现不好的个体通过向表现好的个体学习使得自身往好的方向转变,这里存在一个前提:所有鸟知道距离食物的远近,距离食物最近包含两部分:当前最近和历史最近。标准粒子群算法适合求解函数极值问题,在TSP、背包问题上多用混合型粒子群算法。详细介绍可参考[粒子群算法研究]转载 2023-03-31 10:07:40 · 510 阅读 · 0 评论 -
TSP+ACO+python
旅行商人要拜访n个城市,并最终回到出发城市,要求每个城市只能拜访一次,优化目标是最小化路程之和。1、蚂蚁在行走过程中会依据信息素来选择道路,选择信息素较浓的路走,并且在行走的路径中会释放信息素,对于所有蚂蚁都没经过的路,则随机选择一条路走;2、蚂蚁释放的信息素浓度与长度相关,通常与路径长度成反比;3、信息素浓的路径会受到蚂蚁更大概率的选择,形成正向反馈,最短路径上的信息素浓度会越来越大,最终蚁群就都按这条最短路径走。转载 2023-03-31 10:05:21 · 237 阅读 · 0 评论 -
TSP+SA+python
旅行商人要拜访n个城市,并最终回到出发城市,要求每个城市只能拜访一次,优化目标是最小化路程之和。转载 2023-03-31 10:03:17 · 76 阅读 · 0 评论 -
TSP+SA+python
旅行商人要拜访n个城市,并最终回到出发城市,要求每个城市只能拜访一次,优化目标是最小化路程之和。转载 2023-03-31 10:02:26 · 170 阅读 · 0 评论 -
TSP_TABU+python
旅行商人要拜访n个城市,并最终回到出发城市,要求每个城市只能拜访一次,优化目标是最小化路程之和。转载 2023-03-31 10:00:10 · 321 阅读 · 0 评论 -
TSP+GA+python
旅行商人要拜访n个城市,并最终回到出发城市,要求每个城市只能拜访一次,优化目标是最小化路程之和。转载 2023-03-31 09:56:05 · 262 阅读 · 0 评论