必读论文|实体链接经典论文推荐47篇

实体链接(entity linking)的任务是识别出文本中的提及(mention) 并建立起到知识库实体(entity)的链接,将非结构化数据连接到结构化数据。实体链接利用知识库中大量实体的丰富信息,实现各种语义应用,如实体链接是很多信息抽取(IR)和自然语言理解(NLU)pipeline 中的重要组件,因为它能够消除文本中 mention 的歧义,并确定 mention 的正确含义。

本文按照 2020 年综述 “Neural Entity Linking: A Survey of Models Based on Deep Learning” 中对主流方法的分类,结合多个 Benchmark 的 SOTA 模型,整理出 2021 年及以前的 47 篇值得一读的实体链接领域的论文

General Architecture

Candidate Generation

surface form matching
  1. "Combining word and entity embeddings for entity linking" Jose G. Moreno, Romaric Besancon , Romain Beaumont (ESWC 2017) [paper] [code]
dictionary lookup
  1. "Personalized page rank for named entity disambiguation" Maria Pershina, Yifan He, Ralph Grishman (NAACL 2015)[paper] [code]

  2. "YAGO A core of semantic knowledge unifying wordnet and wikipedia" Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum (www 2007) [paper] [code]

prior probability
  1. "A Cross-Lingual Dictionary for English Wikipedia Concepts" Valentin I. Spitkovsky, Angel X. Chang (LREC 2012) [paper] [code]

  2. "Deep joint entity disambiguation with local neural attention" Octavian-Eugen Ganea, Thomas Hofmann (EMNLP 2017) [paper] [code]

Context-Mention Encoding

recurrent architecture
  1. "Entity linking via joint encoding of types, descriptions, and context" Nitish Gupta, Sameer Singh, Dan Roth (EMNLP 2017) [paper] [code]

  2. "End-to-end neural entity linking" Nikolaos Kolitsas, Octavian-Eugen Ganea, Thomas Hofmann (CoNLL 2018) [paper] [code]

  3. "Neural cross-lingual entity linking" Avirup Sil, Gourab Kundu, Radu Florian, Wael Hamza (AAAI 2018) [paper] [code]

self-attention
  1. "Zero-shot entity linking by reading entity descriptions" Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee (ACL 2019) [paper] [code]

  2. "Scalable Zero-shot Entity Linking with Dense Entity Retrieval" Ledell Wu, Fabio Petroni, Martin Josifoski (EMNLP 2020) [paper] [code]

  3. "Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities" Ikuya Yamada, Koki Washio, Hiroyuki Shindo, Yuji Matsumoto (2019) [paper] [code]

Entity Encoding

pre-trained:基于原始标注文本
  1. "Combining word and entity embeddings for entity linking" Jose G. Moreno, Romaric Besancon , Romain Beaumont (ESWC 2017) [paper] [code]

  2. "Robust and Collective Entity Disambiguation through Semantic Embeddings Stefan" Stefan Zwicklbauer, Christin Seifert, Michael Granitzer (SIGIR 2016) [paper] [code]

  3. "Jointly Embedding Entities and Text with Distant Supervision" Denis Newman-Griffis, Albert M Lai, Eric Fosler-Lussier (ACL 2018) [paper] [code]

  4. "Improving neural entity disambiguation with graph embeddings" Özge Sevgili, Alexander Panchenko, Chris Biemann (ACL 2019) [paper] [code]

joint encoding and ranking
  1. "Learning dense representations for entity retrieval" Daniel Gillick, Sayali Kulkarni, Larry Lansing, (CoNLL 2019) [[paper]](./papers/Gillick et al. - 2019 - Learning dense representations for entity retrieval.pdf) [code]

  2. "Entity linking via joint encoding of types, descriptions, and context" Nitish Gupta, Sameer Singh, Dan Roth (EMNLP 2017) [paper] [code]

  3. "Zero-shot entity linking by reading entity descriptions" Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee (ACL 2019) [paper] [code]

Unlinkable Mention Prediction

no candidate
  1. "Neural cross-lingual entity linking" Avirup Sil, Gourab Kundu, Radu Florian, Wael Hamza (AAAI 2018) [paper] [code]

  2. "Cross-lingual Wikification Using Multilingual Embeddings" Chen-Tse Tsai, Dan Roth (NAACL 2016) [paper] [code]

threshold
  1. "Plato A Selective Context Model for Entity Resolution" Nevena Lazic, Amarnag Subramanya, Michael Ringgaard, Fernando Pereira (TACL 2015)[paper] [code]

  2. "Knowledge enhanced word representation" Matthew E. Peters, Mark Neumann, Robert Logan (EMNLP 2019) [paper] [code]

NIL predictor
  1. "End-to-end neural entity linking" Nikolaos Kolitsas, Octavian-Eugen Ganea, Thomas Hofmann (CoNLL 2018) [paper] [code]
separate model
  1. "Joint learning of named entity recognition and entity linking" Pedro Henrique Martins, Zita Marinho, André F. T. Martins (ACL 2019) [paper] [code]

  2. "Combining word and entity embeddings for entity linking" Jose G. Moreno, Romaric Besancon , Romain Beaumont (ESWC 2017) [paper] [code]

Modifications of the General Architecture

Joint Entity Recognition and Disambiguation Architecture

candidate based
  1. "End-to-end neural entity linking" Nikolaos Kolitsas, Octavian-Eugen Ganea, Thomas Hofmann (CoNLL 2018) [paper] [code]

  2. "Knowledge enhanced word representation" Matthew E. Peters, Mark Neumann, Robert Logan (EMNLP 2019) [paper] [code]

multitask learning
  1. "Joint learning of named entity recognition and entity linking" Pedro Henrique Martins, Zita Marinho, André F. T. Martins (ACL 2019) [paper] [code]
sequence labeling
  1. "Investigating entity knowledge in BERT with simple neural end-to-end entity linking" Samuel Broscheit (CoNLL 2019) [paper] [code]

Global Context Architecture

random walk based
  1. "Robust named entity disambiguation with random walks" Zhaochen Guo, Denilson Barbosa (SWJ 2016) [paper] [code]

  2. "Personalized page rank for named entity disambiguation" Maria Pershina, Yifan He, Ralph Grishman (NAACL 2015)[paper] [code]

  3. "Robust and Collective Entity Disambiguation through Semantic Embeddings Stefan" Stefan Zwicklbauer, Christin Seifert, Michael Granitzer (SIGIR 2016) [paper] [code]

maximization of CRF potentials
  1. "Deep joint entity disambiguation with local neural attention" Octavian-Eugen Ganea, Thomas Hofmann (EMNLP 2017) [paper] [code]

  2. "Improving entity linking by modeling latent relations between mentions" Phong Le, Ivan Titov (ACL 2018) [[paper]](./papers/Le, Titov - 2018 - Improving entity linking by modeling latent relations between mentions.pdf) [code]

sequential decision task
  1. "Joint Entity Linking with Deep Reinforcement Learning" Zheng Fang, Yanan Cao, Dongjie Zhang (2019) [paper] [code]

  2. "Learning dynamic context augmentation for global entity linking" Xiyuan Yang, Xiaotao Gu, Sheng Lin, Siliang Tang (EMNLP 2019) [paper] [code]

  3. "Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities" Ikuya Yamada, Koki Washio, Hiroyuki Shindo, Yuji Matsumoto (2019) [paper] [code]

neural model component
  1. "Neural Collective Entity Linking" Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu (COLING 2018)[paper] [code]

  2. "Collective entity resolution with multi-focal attention" Amir Globerson, Nevena Lazic, Soumen Chakrabarti (ACL 2016) [paper] [code]

  3. "End-to-end neural entity linking" Nikolaos Kolitsas, Octavian-Eugen Ganea, Thomas Hofmann (CoNLL 2018) [paper] [code]

larger context
  1. "Bridging text and knowledge by learning multi-prototype entity mention embedding" Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, Juanzi Li (ACL 2017) [paper] [code]

  2. "Entity linking via joint encoding of types, descriptions, and context" Nitish Gupta, Sameer Singh, Dan Roth (EMNLP 2017) [paper] [code]

  3. "Knowledge enhanced word representation" Matthew E. Peters, Mark Neumann, Robert Logan (EMNLP 2019) [paper] [code]

Domain Independent Architecture

distant learning
  1. "Distant learning for entity linking with automatic noise detection" Phong Le, Ivan Titov (ACL 2019) [paper] [code]

  2. "Boosting Entity Linking Performance by Leveraging Unlabeled Documents" Phong Le, Ivan Titov (ACL 2019) [paper] [code]

zero-shot
  1. "Learning dense representations for entity retrieval" Daniel Gillick, Sayali Kulkarni, Larry Lansing, (CoNLL 2019) [[paper]](./papers/Gillick et al. - 2019 - Learning dense representations for entity retrieval.pdf) [code]

  2. "Zero-shot entity linking by reading entity descriptions" Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee (ACL 2019) [paper] [code]

  3. "Scalable Zero-shot Entity Linking with Dense Entity Retrieval" Ledell Wu, Fabio Petroni, Martin Josifoski (EMNLP 2020) [paper] [code]

Cross-lingual Architecture

representation based
  1. "Cross-lingual Name Tagging and Linking for 282 Languages" Xiaoman Pan, Boliang Zhang, Jonathan May (ACL 2017) [paper] [code]

  2. "Cross-lingual Wikification Using Multilingual Embeddings" Chen-Tse Tsai, Dan Roth (NAACL 2016) [paper] [code]

zero-shot
  1. "Neural cross-lingual entity linking" Avirup Sil, Gourab Kundu, Radu Florian, Wael Hamza (AAAI 2018) [paper] [code]

  2. "Joint multilingual supervision for cross-lingual entity linking" Shyam Upadhyay, Nitish Gupta, Dan Roth ( EMNLP 2018) [paper] [code]

SOTA

AIDA-CoNLL

entity disambiguation
  1. "Entity-aware ELMo Learning Contextual Entity Representation for Entity Disambiguation" Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, (2019) [paper] [code] [Accuracy: 0.962]

  2. "Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities" Ikuya Yamada, Koki Washio, Hiroyuki Shindo, Yuji Matsumoto (2019) [paper] [code] [Accuracy: 0.950]

  3. "Evaluating the Impact of Knowledge Graph Context on Entity Disambiguation Models" Isaiah Onando Mulang’, Kuldeep Singh, Chaitali Prabhu (CIKM 2020) [paper] [code] [Accuracy: 0.9494]

  4. "DeepType Multilingual entity linking by neural type system evolution" Jonathan Raiman, Olivier Raiman (AAAI 2018) [paper] [code] [Accuracy: 0.909] [Accuracy: 0.9488]

  5. "Learning Distributed Representations of Texts and Entities from Knowledge Base" Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda (TACL 2017) [paper] [code] [Accuracy: 0.931]

entity linking
  1. "Autoregressive Entity Retrieval" Nicola De Cao, Gautier Izacard, Sebastian Riedel, Fabio Petroni (2021) [paper] [code] [Micro-f1 strong: 0.837]

  2. "CHOLAN A modular approach for neural entity linking on wikipedia and wikidata" Manoj Prabhakar Kannan Ravi, Kuldeep Singh (EACL 2021) [paper] [code] [Micro-f1 strong: 0.831]

  3. "End-to-end neural entity linking" Nikolaos Kolitsas, Octavian-Eugen Ganea, Thomas Hofmann (CoNLL 2018) [paper] [code] [Micro-f1 strong: 0.826]

  4. "Investigating entity knowledge in BERT with simple neural end-to-end entity linking" Samuel Broscheit (CoNLL 2019) [paper] [code] [Micro-f1 strong: 0.793]

TAC 2010

  1. "Scalable Zero-shot Entity Linking with Dense Entity Retrieval" Ledell Wu, Fabio Petroni, Martin Josifoski (EMNLP 2020) [paper] [code] [Accuracy: 0.940]

  2. "Neural Collective Entity Linking" Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu (COLING 2018)[paper] [code] [Accuracy: 0.910]

  3. "DeepType Multilingual entity linking by neural type system evolution" Jonathan Raiman, Olivier Raiman (AAAI 2018) [paper] [code] [Accuracy: 0.909]

  4. "ELDEN Improved entity linking using densified knowledge graphs" Priya Radhakrishnan, Partha Talukdar, Vasudeva Varma (NAACL 2018) [paper] [code] [Accuracy: 0.896]

  5. "Entity disambiguation by knowledge and text jointly embedding" Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen, Ming Li (CoNLL 2016) [paper] [code] [Accuracy: 0.889]

ACE 2004

  1. "Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities" Ikuya Yamada, Koki Washio, Hiroyuki Shindo, Yuji Matsumoto (2019) [paper] [code] [Micro-f1: 0.919]

  2. "Entity linking via joint encoding of types, descriptions, and context" Nitish Gupta, Sameer Singh, Dan Roth (EMNLP 2017) [paper] [code]

  3. "Joint Entity Linking with Deep Reinforcement Learning" Zheng Fang, Yanan Cao, Dongjie Zhang (2019) [paper] [code] [Micro-f1: 0.912]

  4. "Autoregressive Entity Retrieval" Nicola De Cao, Gautier Izacard, Sebastian Riedel, Fabio Petroni (2021) [paper] [code] [Micro-f1: 0.901]

  5. "Learning dynamic context augmentation for global entity linking" Xiyuan Yang, Xiaotao Gu, Sheng Lin, Siliang Tang (EMNLP 2019) [paper] [code] [Micro-f1: 0.901]

AQUAINT

  1. "Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities" Ikuya Yamada, Koki Washio, Hiroyuki Shindo, Yuji Matsumoto (2019) [paper] [code] [Micro-f1: 0.935]

  2. "Boosting Entity Linking Performance by Leveraging Unlabeled Documents" Phong Le, Ivan Titov (ACL 2019) [paper] [code] [Micro-f1: 0.907]

  3. "Autoregressive Entity Retrieval" Nicola De Cao, Gautier Izacard, Sebastian Riedel, Fabio Petroni (2021) [[paper] [code] [Micro-f1: 0.899]

  4. "Deep joint entity disambiguation with local neural attention" Octavian-Eugen Ganea, Thomas Hofmann (EMNLP 2017) [paper] [code] [Micro-f1: 0.885]

  5. "Improving entity linking by modeling latent relations between mentions" Phong Le, Ivan Titov (ACL 2018) [[paper]](./papers/Le, Titov - 2018 - Improving entity linking by modeling latent relations between mentions.pdf) [code]

MSNBC

  1. "Global Entity Disambiguation with Pretrained Contextualized Embeddings of Words and Entities" Ikuya Yamada, Koki Washio, Hiroyuki Shindo, Yuji Matsumoto (2019) [paper] [code] [Micro-f1: 0.963]

KILT

  1. "Autoregressive Entity Retrieval" Nicola De Cao, Gautier Izacard, Sebastian Riedel, Fabio Petroni (2021) [paper] [code]

  2. "Scalable Zero-shot Entity Linking with Dense Entity Retrieval" Ledell Wu, Fabio Petroni, Martin Josifoski (EMNLP 2020) [paper] [code]

  3. "KILT a Benchmark for Knowledge Intensive Language Tasks" Fabio Petroni, Aleksandra Piktus, Angela Fan (NAACL 2021) [paper] [code]

DuEL

  1. "Overview of the CCKS 2019 Knowledge Graph Evaluation Track Entity" Xianpei Han, Zhichun Wang, Jiangtao Zhang (CCKS 2019) [paper] [code]

Evaluation & Datasets

  1. "General entity annotator benchmarking framework" Ricardo Usbeck, Michael Röder (WWW 2015) [paper]

  2. "Robust disambiguation of named entities in text" Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, (EMNLP 2011) [paper] AIDA

  3. "Overview of the TAC 2010 Knowledge Base Population Track" Heng Ji , Ralph Grishman , Hoa Trang Dang [paper] TAC KBP 2010

  4. "Large-Scale Named Entity Disambiguation Based on Wikipedia Data" Silviu Cucerzan (EMNLP 2007) [paper] MSNBC

  5. "Learning to link with wikipedia" David Milne, Ian H. Witten (CIKM 2008) [[paper]](./papers/Milne, Witten - 2008 - Learning to link with wikipedia.pdf) AQUAINT

  6. "Local and Global Algorithms for Disambiguation to Wikipedia" Lev Ratinov, Dan Roth, Doug Downey, Mike Anderson (ACL 2011)[paper] ACE2004

Comments

If you find any errors in the above information, please post it in Issues. Pull requests are welcomed for adding papers.

Comments

如果需要下载好的论文集,请在评论区留下邮箱地址📮

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值