原创 | 假期必读:一文看尽2019-2020各大顶会GNN论文(附链接)

本文汇总了2019-2020年KDD、NeurIPS、ICCV等顶级会议中关于图神经网络(GNN)的重要论文,涵盖了社交网络、知识图谱、推荐系统等多个领域的应用。通过阅读这些论文,读者可以了解GNN在节点分类、图表示学习、动作定位、多跳推理等方面的最新进展和开源代码资源。
摘要由CSDN通过智能技术生成

纵观2019年包括深度学习、计算机视觉、文本处理以及数据挖掘在内的顶级会议,图学习相关的论文较于之前都有十分明显的增长。而就 2020的情况来看,这个趋势还在不断扩大。总之,Graph Neural Network 在2019- 2020年之间,力压 Deep Learning、GAN等,成为各大顶会的增长热词,且GNN在各个领域越来越受到欢迎,包括社交网络、知识图谱、推荐系统,甚至生命科学。大家在假期期间不妨收藏起来慢慢读。

KDD 2019

1、Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

作者:Wei-Lin Chiang; Xuanqing Liu; Si Si; Yang Li; Samy Bengio; Cho-Jui Hsieh;

推荐理由:这篇论文提出了一种新的基于图聚类结构且适合于基于SGD训练的GCN算法——Cluster-GCN,高效解决工业界训练大规模深层图卷积神经网络问题,性能大幅提升基础上依靠可训练更深层网络优势达到SOTA效果,并开源了源代码。

地址:https://arxiv.org/pdf/1905.07953.pdf

2、Conditional Random Field Enhanced Graph Convolutional Neural Networks

作者:Hongchang Gao; Jian Pei; Heng Huang;

推荐理由:为解决图神经网络的隐藏层的问题,作者们提出了一种新的CRF层用于图卷积神经网络,以使得相似节点具有相似的隐藏特征。这样,可以显式地保存相似性信息。此外,作者提出的CRF层易于计算和优化。因此,它可以很容易地插入到现有的图卷积神经网络中,提高其性能。同时,他们用大量的实验结果验证了CRF层的有效性。

地址:

https://www.kdd.org/kdd2019/accepted-papers/view/conditional-random-field-enhanced-graph-convolutional-neural-networks

3、DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph Classification

作者:Jun Wu; Jingrui He; Jiejun Xu;

推荐理由:为了解决图神经网络的一些局限性问题,作者们提出了一种基于Weisfeiler- Lehman图同构测试的通用degree-specific图神经网络DEMO-Net。在多个节点和图分类基准数据集上的实验结果表明,他们提出的DEMO-Net相对于最先进的图神经网络模型的有效性和高效性。

地址:

https://arxiv.org/abs/1906.02319?context=cs

4、GCN-MF: Disease-Gene Association Identification By Graph Convolutional Networks and Matrix Factorization

作者:Peng Han; Peng Yang; Peilin Zhao; Shuo Shang; Yong Liu; Jiayu Zhou; Xin Gao; Panos Kalnis;

推荐理由:发现疾病基因关联是一项基础性和关键性的生物医学任务,它有助于生物学家和医生发现症候的致病机制。基于网络的半监督学习(NSSL)是这些研究中常用的一种方法,它利用各种临床生物标志物来测量基因和疾病表型之间的相似性,来解决这个类平衡的大规模数据问题。然而,大多数现有的NSSL方法都是基于线性模型的,存在两个主要限制:1)它们隐式地考虑每个候选对象的局部结构表示; 2)他们无法捕捉疾病和基因之间的非线性联系。这篇文章将图卷积网络(GCN)和矩阵因子分解相结合,提出了一种新的疾病基因关联任务框架GCN-MF。在GCN的帮助下,作者可以捕获非线性相互作用,并利用测量到的相似性。此外,他们定义了一个边际控制损失函数,以减少稀疏性的影响。实验结果表明,所提出的深度学习算法在大多数指标上都优于其他最先进的方法。

地址:

https://www.kdd.org/kdd2019/accepted-papers/view/cluster-gcn-an-efficient-algorithm-for-training-deep-and-large-graph-convol

5、Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks

作者:Namyong Park; Andrey Kan; Xin Luna Dong; Tong Zhao; Christos Faloutsos;

推荐理由:在这篇文章中,作者们提出了GENI,一种解决知识图谱(KG)中节点重要性估计问题的方法,作者通过predicate-aware注意力机制和灵活的中心性调整来执行重要性分数的聚合,而不是聚合节点嵌入。在他们对GENI和现有方法的评估中,GENI在预测具有不同特征的真实KG中节点重要性方面比现有方法高出5-17%。

地址:https://arxiv.org/abs/1905.08865

6、Graph Recurrent Networks with Attributed Random Walks

作者:Xiao Huang; Qingquan Song; Yuening Li; Xia Hu;

推荐理由:作者研究了在attributed网络上进行联合随机游动,并利用它们来提高深度节点表示学习。他们提出的框架GraphRNA由两个主要组件组成:一种协作游走机制—AttriWalk,以及一种为随机游走量身定制的深度嵌入体系结构,称为图递归网络(graph recurrent networks ,GRN)。AttriWalk使我们能够将突出的深度网络嵌入模型-图卷积网络推向一个更有效的架构——GRN。GRN赋予节点表示以与原始attributed网络中的节点交互相同的方式进行交互。在真实数据集上的实验结果表明,与目前最先进的嵌入算法相比,GraphRNA算法很有效。

地址:

https://www.kdd.org/kdd2019/accepted-papers/view/graph-recurrent-networks-with-attributed-random-walks

7、Representation Learning for Attributed Multiplex Heterogeneous Network

推荐系统结合了图神经网络 (Graph Neural Networks, GNNs) 的优势,在处理用户、商品、兴趣等实体之间的复杂关系数据上展现出强大的潜力。在顶上,关于这个领域的研究论文通常涉及以下几个方面: 1. **模型设计**:如应用于社交网络的SocialGAT(Social Graph Attention Network)、用于协同过滤的GC-MC(Graph Convolutional Matrix Completion),以及基于知识图谱的KGAT(Knowledge Graph Attention Network)。 2. **深度学习与图结构融合**:论文探讨如何通过深度学习架构,如GCN (Graph Convolutional Networks)、GAT (Graph Attention Networks) 或者Transformer结构,捕捉用户的动态兴趣和交互模式。 3. **个性化推荐**:GNNs被用来挖掘用户的历史行为和偏好,生成个性化的物品推荐列表,提升用户体验。 4. **联合训练和多任务学习**:研究如何将推荐系统与其他信息检索任务(如广告点击预测、评论情感分析)结合起来,利用跨任务的知识共享提高性能。 5. **评估与挑战**:讨论如何衡量推荐系统的图结构效果,例如新颖性和多样性,同时关注如何处理稀疏性和冷启动问题。 一些重要的图神经网络相关的推荐系统顶包括但不限于SIGIR (ACM International Conference on Information and Knowledge Management)、KDD (Conference on Knowledge Discovery and Data Mining)、WWW (World Wide Web Conference) 和 ICLR (International Conference on Learning Representations) 等。如果你想深入了解这方面的最新进展,可以查阅这些议的论文集或者搜索在线资源,如arXiv预印本库。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值