Apriori算法详解笔记

本文详细解析了Apriori算法,这是一种经典的挖掘频繁项集的关联规则算法,核心思想是通过连接和剪枝操作。同时,提到了Apriori性质,即频繁项目集的非空子集也是频繁的。此外,还介绍了FP-Tree和Eclat等其他关联规则挖掘算法,以补充说明关联规则挖掘的不同方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

强关联规则

  1. 在D上满足最小支持度min-sup和最小可信度min-conf的关 联规则称为强关联规则
    常用的关联规则算法

常用的关联规则算法

Apriori

  1. 关联规则最常用、最经典的挖掘频繁项集的算法,核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集无法处理连续型数值变量,往往分析之前需要对数据进行离散化。

  2. Apriori性质

    如果项目集X是频繁项目集,则它的所有非空子集
    都是频繁项目集
    如{I1,I2}频繁,则{I1}频繁。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值