一、文章出处
本文题为《Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning》,文章链接:原文链接,加载过程较慢容易出现问题,提供资源分享下载链接:分享链接
二、主要内容
文章提出一种通过模仿学习实现质量感知的 ABR 系统,称为Comyco,其系统基本工作流程示意如下图所示。
主要工作过程是通过 Instant Solver 得到 expert policy,将其传送给 Virtual Player 。Virtual Player 又通过 Neural Network 输出的 probability of bitrate 进一步 rollout 出给 Virtual Player 的输入参数。再将 Virtual Player 的输出暂存在 Experience Buffer 中联合 expert action 计算 loss,进一步更新 NN 结构。
详细各模块实现过程如下:
1.Neural Network
2.Experience Buffer
3.Instant Solver and Virtual Player
三、模型效果
由图可见,Comyco 在各类视频的传输过程中,平均 QoE 方面的表现在现有的 ABR 算法基础上有很大提升。