论文阅读——通过模仿学习实现质量感知的自适应视频流(ABR)

文章介绍了题为《Comyco: Quality - Aware Adaptive Video Streaming via Imitation Learning》的研究。提出通过模仿学习实现质量感知的ABR系统Comyco,阐述其工作流程,包括通过Instant Solver得到expert policy等步骤,且Comyco在视频传输平均QoE表现上比现有ABR算法有很大提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、文章出处

本文题为《Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning》,文章链接:原文链接,加载过程较慢容易出现问题,提供资源分享下载链接:分享链接

二、主要内容

文章提出一种通过模仿学习实现质量感知的 ABR 系统,称为Comyco,其系统基本工作流程示意如下图所示。
在这里插入图片描述
主要工作过程是通过 Instant Solver 得到 expert policy,将其传送给 Virtual Player 。Virtual Player 又通过 Neural Network 输出的 probability of bitrate 进一步 rollout 出给 Virtual Player 的输入参数。再将 Virtual Player 的输出暂存在 Experience Buffer 中联合 expert action 计算 loss,进一步更新 NN 结构。

详细各模块实现过程如下:

1.Neural Network

在这里插入图片描述

2.Experience Buffer

在这里插入图片描述

3.Instant Solver and Virtual Player

在这里插入图片描述

三、模型效果

在这里插入图片描述
由图可见,Comyco 在各类视频的传输过程中,平均 QoE 方面的表现在现有的 ABR 算法基础上有很大提升。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值