最短路之Bellmanford与spfa算法

本文深入探讨了Bellman-Ford算法,一种用于解决单源最短路径问题的经典算法,并能有效判断图中是否存在负权边。文章详细介绍了算法的执行过程,包括初始化、|V|-1次松弛操作及负权判定,同时提供了时间复杂度分析,为读者全面理解算法原理提供帮助。
摘要由CSDN通过智能技术生成

Bellman ford

应用场景:
		单源最短路径问题;
		判断图中是否存在负权(有些题变形:正权)
执行过程:v个顶点,边集中e条边。
1. 初始化:d[]=inf; d[s] = 0;
2. 对边集进行|v|-1次松弛;
3. 进行负权判定。
4. 时间复杂度:O(VE)
原理证明:
摘自晴神宝典:

在这里插入图片描述

实行过程讲解:

摘自视频

在这里插入图片描述

Pseudo code:

在这里插入图片描述
在这里插入图片描述

BF的优化算法:SPFA算法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值