吴恩达机器学习 第三章学习笔记

第三章是对线性代数知识的复习。

1. 矩阵和向量

矩阵是用方括号括起来的一些数,矩阵的维度用行数×列数来表示,向量是一种特殊的矩阵,是只有一列的矩阵。
矩阵一般用大写字母A、B、C等表示,向量一般用小写字母x、y、z等表示。

2. 加法和标量乘法

维度相等的矩阵可以进行相加,处于相同行列下标的元素相加。结果矩阵的维度等于加数矩阵的维度。例:
在这里插入图片描述

用标量×矩阵等于用标量×矩阵的每个元素。例:
在这里插入图片描述

3. 矩阵向量乘法

m×n的矩阵乘以n×1的向量,得到的是m×1的向量。

4. 矩阵乘法

m×o的矩阵乘以o×n的矩阵,得到的是m×n的矩阵。

5. 矩阵乘法的性质

矩阵乘法不具有交换律,但具有结合律。
下图是单位矩阵的讲解:在这里插入图片描述

6. 逆和转置

元素全为0的矩阵没有逆矩阵。不存在逆矩阵的矩阵成为奇异矩阵或退化矩阵。
矩阵A是m×n的矩阵,则A的转置矩阵是n×m大小的矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值