第三章是对线性代数知识的复习。
1. 矩阵和向量
矩阵是用方括号括起来的一些数,矩阵的维度用行数×列数来表示,向量是一种特殊的矩阵,是只有一列的矩阵。
矩阵一般用大写字母A、B、C等表示,向量一般用小写字母x、y、z等表示。
2. 加法和标量乘法
维度相等的矩阵可以进行相加,处于相同行列下标的元素相加。结果矩阵的维度等于加数矩阵的维度。例:
用标量×矩阵等于用标量×矩阵的每个元素。例:
3. 矩阵向量乘法
m×n的矩阵乘以n×1的向量,得到的是m×1的向量。
4. 矩阵乘法
m×o的矩阵乘以o×n的矩阵,得到的是m×n的矩阵。
5. 矩阵乘法的性质
矩阵乘法不具有交换律,但具有结合律。
下图是单位矩阵的讲解:
6. 逆和转置
元素全为0的矩阵没有逆矩阵。不存在逆矩阵的矩阵成为奇异矩阵或退化矩阵。
矩阵A是m×n的矩阵,则A的转置矩阵是n×m大小的矩阵。