1.定义:
维度(dimensionality),又称为维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。0维是一个无限小的点,没有长度。1维是一条无限长的直线,只有长度。2维是一个平面,是由长度和宽度(或部分曲线)组成面积。3维是2维加上高度组成体积。4维分为时间上和空间上的4维,人们说的4维通常是指关于物体在时间线上的转移。
(4维准确来说有两种。1.四维时空,是指三维空间加一维时间。2.四维空间,只指四个维度的空间。)四维运动产生了五维。
哲学上,维度相当于“角度”,指的是人们思考看待问题的切入点,例如,人们观察与思考“月亮”这个事物,可以从月亮的“内容、时间、空间”三个思维角度去描述。
2.理解:
数学上:
通常的理解是:“点是0维、直线是1维、平面是2维、体是3维”。实际上这种说法中提到的概念是“前提”而不是“被描述对象”,被描述对象均是“点”。故其完整表述应为“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。
再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值);在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。
如果我们改变“对象”就会得到不同的结论,如:“直线基于平面是4维、直线基于体是6维、平面基于体是9维”。进一步解释,两点可确定一条直线,所以描述(定位)一条直线在平面上需要2×2个参数(坐标值)、在体上需要2×3个参数(坐标值);不共线的三点可确定一个平面,所以在体上描述(定位)一个平面需要3×3个参数(坐标值)。
向量中:
n个有次序的数 所组成的数组称为 维向量,这 个数称为该 维向量的 个分量,第 个数 称为第 个分量。
向量既可以是行向量也可以是列向量,但不管是行向量还是列向量,都把向量中的分量的总个数称为向量的维度,也就是说,向量的维度理解为向量的长度。
几何中:
“空间”通常是作为点的集合,即构成“空间” 元素是点,这样的空间称为点空间,我们把3维向量的全体集合:
叫做3维向量空间。
类似地, 维向量的全体组成的集合:
叫做 维向量空间。