#数据挖掘与模式识别、机器学习的研究与应用#
机器学习,让机器模拟人类来学习新的技能与知识。让计算机学会像人一样举一反三,让程序从大量的历史样本数据中寻找出其中隐含的规律与模式,利用这个规律与模式可以对新的样本进行预测和分类等。机器学习分为监督学习,半监督学习和无监督学习。监督学习可以看做是寻找一个函数f(x),而这个函数是通过大量的已知的样本x与其所对应的y值所确定的,这个函数不仅仅适用于已知样本,当输入新的样本时,可以得到一个期望值,根据这个期望值,便可以对新样本进行预测和分类。半监督学习就是原始的样本x部分有其所对应的y值,部分原始的样本没有其对应的y值,程序根据这些数据一样找到规律,得到一个f(x)。而无监督学习就是原始样本x都没有其所对应的y值,需要自己去摸索,来找到样本x中所符合的规律,从而可以总结出一个f(x),这个f(x)同样也适用于新的样本。近年来,机器学习多应用在大数据下,产生了巨大的价值,大数据是的核心是利用数据价值,而机器学习是利用数据价值的关键技术,而大数据为机器学习提供了大量的数据,使机器学习的预测与分类准确。机器学习是实现人工智能的一种重要的方法,而深度学习是一种实现机器学习的技术。人工智能还可用于计算机视觉,语音识别等多个领域。
模式识别,就是对模式的区分和分类,把研究对象根据其特征归到众多类中的一种,也可以叫模式分类。有一些复杂的模式识要对其结构特征进行描述才能进行识别,如汉字识别,景物识别。模式识别是让计算机通过一系列的数学方法来达到人类神经生理学的识别功能。模式识别属于机器学习的一种,是利用机器学习来对样本进行识别后分类。所以,模式识别与机器学习的方
数据挖掘与模式识别、机器学习的研究与应用
最新推荐文章于 2023-03-06 12:53:36 发布
本文探讨了机器学习的三种类型——监督、半监督和无监督学习,并阐述了它们在大数据中的应用价值。同时,介绍了模式识别的概念,强调了其在图像识别、人脸识别等领域的应用。数据挖掘作为知识发现的过程,与机器学习和数据库相结合,用于市场营销等领域。这些技术结合大数据,能挖掘出更多有价值的信息。
摘要由CSDN通过智能技术生成