JZOJ6344. 【NOIP2019模拟2019.9.7】Huge Counting

49 篇文章 0 订阅
9 篇文章 0 订阅

Description

在这里插入图片描述
T<=10,k<=9;l,r<=1e12

Solution

  • 显然如果没有mod 2 的话,f(x1…xn),就是从(1…1)走到(x1…xn)方案数
  • 把所有的x全部减一,则
    f ( x 1 , x 2... , x n ) = ( ∑ x i ) ! ∏ x i ! f(x1,x2...,xn)=\frac {(\sum xi)! }{\prod xi!} f(x1,x2...,xn)=xi!(xi)!
  • 接下来我们只用考虑上式是否有2这个因子,如果没有就是奇数,那么mod 2 就有1的贡献。
  • s ! s! s!中2的因子的个数为 ∑ s 2 i \sum \frac {s} {2^i} 2is
  • 所以上式f的2的因子个数就是(除法皆为下取整)
    ∑ ( ∑ x i 2 k − ∑ x i 2 k ) \sum (\frac {\sum xi} {2^k}-\sum \frac {xi}{2^k}) (2kxi2kxi)
  • 显然对于任意一个k,括号里的都大于等于0。
  • 考虑整除2k就相当于在2进制下把后k位截掉。
  • 如果有两个x在k位上都为1,那么相加之后进位到k+1位,而这里的又被截掉了,所以就会对k+1位的结果有+1的贡献。这样的话就会有大于0个2的因子了。
  • 所以我们可以得出结论,如果要满足有贡献,这些二进制下每一位所有的x中最多只有一个1.
  • 设状态记录哪几位顶住了上限,状压DP一下。
  • 因为有区间,所以容斥一下就好了
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 10
#define ll long long 
#define mo 990804011
#define Q(i) (1ll<<i)
using namespace std;

int T,n,i,j,k,opt[1<<maxn];
ll l[maxn],r[maxn],x[maxn],f[2][1<<maxn-1];


ll Doit(){
	for(i=1;i<=n;i++) if (x[i]<0) return 0;
	ll mx=0; 
	for(i=1;i<=n;i++) mx=max(mx,x[i]);
	int cnt=0; while (mx) mx>>=1,cnt++;
	memset(f[cnt&1],0,sizeof(f[cnt&1]));
	
	f[cnt&1][Q(n)-1]=1;
	for(k=cnt-1;k>=0;k--) {
		int p=k&1,q=p^1;
		memset(f[p],0,sizeof(f[p]));
		for(int S=0;S<Q(n);S++) if (f[q][S]){
			int T=0;
			for(int i=1;i<=n;i++) if ((S&Q(i-1))&&!(x[i]&Q(k)))
				T+=Q(i-1);
			f[p][T]+=f[q][S];
			for(int i=1;i<=n;i++) if ((x[i]&Q(k))||!(S&Q(i-1))){
				if (S&Q(i-1)) f[p][T^Q(i-1)]+=f[q][S];
				else f[p][T]+=f[q][S];
			}
		}
		for(int S=0;S<Q(n);S++) if (f[p][S]>=mo)
			f[p][S]%=mo;
	}
	ll sum=0;
	for(int S=0;S<Q(n);S++) sum+=f[0][S];
	return sum%mo;
}

int main(){
	freopen("c.in","r",stdin);
	freopen("c.out","w",stdout);
	scanf("%d",&T);
	opt[0]=1;
	for(i=1;i<1<<maxn;i++) opt[i]=-opt[i-(i&-i)];
	while (T--){
		scanf("%d",&n);
		for(i=1;i<=n;i++) scanf("%lld%lld",&l[i],&r[i]);
		ll ans=0;
		for(int RS=0;RS<(1<<n);RS++){
			for(i=1;i<=n;i++) if (RS&Q(i-1)) x[i]=l[i]-2;
				else x[i]=r[i]-1;
			(ans+=opt[RS]*Doit()%mo+mo)%=mo;
		}
		printf("%lld\n",ans);
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值