CF1439E Cheat and Win

4 篇文章 0 订阅
2 篇文章 0 订阅

Description

  • 你有一个坐标范围在 [ 0 , 1 e 9 ] [0,1e9] [0,1e9]的网格图,设所有的满足 x & y = 0 x\&y=0 x&y=0的点 ( x , y ) (x,y) (x,y)为好的点,易证好点形成了一棵树,我们以 ( 0 , 0 ) (0,0) (0,0)为根,给出 m m m个好点点对 ( u , v ) (u,v) (u,v)并把它们之间的路径上的点染为黑色。
  • 现在A和B在玩游戏,A先手,每一次可以选择一个黑点以及它的祖先链的一个可空子集,将它们反色,最后不能操作的输。
  • B现在想通过修改若干次使得自己必胜,每一次修改可以选择一个好点,并将它到根的路径反色。
  • n ≤ 1 e 5 n\le1e5 n1e5

Solution

  • 首先由于每一个点 ( x , y ) (x,y) (x,y)只会向 ( x − 1 , y ) , ( x , y − 1 ) (x-1,y),(x,y-1) (x1,y),(x,y1)中的一个连边,可以讨论最低不同的位置得到,因此这是一棵树。
  • 把表打出来,很容易发现这是一个分型结构,任意两个点的 l c a lca lca或者它们的 d f n dfn dfn可以从 ( 0 , 0 ) (0,0) (0,0)往下面跳 l o g log log次求得。
  • 考虑怎么玩这个游戏,这是一个平等博弈,可以考虑 S G SG SG函数,但是一开始我觉得一个黑点可以影响上面的黑点,因此不同的黑点应该是不独立的游戏才对。
  • 实际上由于 S G SG SG x o r xor xor结合的,而操作又是反色,它们实际上是独立的游戏。
  • 考虑将黑白色看作有多少个黑色,选择祖先链上某些点反色当作让黑色数+1,那么由于如果一个点上有偶数个黑色,它的 S G SG SG对于整体局面的 x o r xor xor和为0,相当于是消成了奇数,因此增加黑色数与原先的取反是等价的。
  • 再简单推一推显然一个深度为 d e p dep dep的点 ( x , y ) (x,y) (x,y) S G = 2 d e p = 2 x + y SG=2^{dep}=2^{x+y} SG=2dep=2x+y.
  • 操作次数相当于是最后 S G SG SG连续 1 1 1的段的个数。
  • 后面就比较套路了,可以直接建立一个虚树,染色即可,当然也不一定要建出来,由于有关的连续垂直或平行边只有 n   l o g   n n\ log\ n n log n条,用类似的东西维护每一段边的染色段也可以。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#define maxn 400005
using namespace std;

int m,i,j,k,tot,cnt;
struct node{int x,y;node(int _x=0,int _y=0){x=_x,y=_y;}} a[maxn][2],p[maxn];
int operator<(node a,node b){return a.x<b.x||a.x==b.x&&a.y<b.y;}
int operator==(node a,node b){return a.x==b.x&&a.y==b.y;}
map<node,int> num; node pnum[maxn];
map<int,int> sum;
map<int,int> ::iterator it;
int nm(node a){
	if (num.find(a)==num.end()) 
		num[a]=++tot,pnum[tot]=a;
	return num[a];
}

int _2[31];
int getb(node a,int x,int y,int k){
	if (a.x<x+_2[k]&&a.y<y+_2[k]) return 0;
	if (a.x>=x+_2[k]) return 1;
	return 2;
}
int cmp(node a,node b){
	int x=0,y=0;
	for(int k=30;k>=0;k--) {
		int t1=getb(a,x,y,k),t2=getb(b,x,y,k);
		if (t1==t2){
			if (t1==1) x+=_2[k];
			if (t1==2) y+=_2[k];
		} else {
			if (t1==0){
				if (t2==1) return 1;
				if (t2==2) return a.x==x;
			} 
			if (t2==0){
				if (t1==1) return 0;
				if (t1==2) return b.x!=x;
			}
			return t1>t2;
		}
	}
	return 0;
}

node lca(node a,node b){
	int x=0,y=0;
	for(int k=30;k>=0;k--){
		int t1=getb(a,x,y,k),t2=getb(b,x,y,k);
		if (t1==t2) {
			if (t1==1) x+=_2[k];
			if (t1==2) y+=_2[k];
		} else {
			if (t1+t2==3) return node(x,y);
			if (t2==0) swap(t1,t2),swap(a,b);
			if (t2==1) b=node(x+_2[k]-1,y);
			if (t2==2) b=node(x,y+_2[k]-1);
		}
	}
	return a;
}

int em,e[maxn],nx[maxn],ls[maxn],w,fa[maxn],c0[maxn],c1[maxn];
node d[maxn]; 
void insert(int x,int y){
	em++; e[em]=y; nx[em]=ls[x]; ls[x]=em;
	fa[y]=x;
}

void maketree(){
	d[w=1]=node(0,0);
	for(i=1;i<=cnt;i++){
		node x=p[i];
		if (x==d[w]) continue;
		node y=lca(d[w],x);
		if (y==d[w]) d[++w]=x; else {
			while (cmp(y,d[w-1]))
				insert(nm(d[w-1]),nm(d[w])),w--;
			if (y==d[w-1]){
				insert(nm(d[w-1]),nm(d[w]));
				d[w]=x;
			} else {
				insert(nm(y),nm(d[w]));
				d[w]=y,d[++w]=x;
			}
		}
	}
	while (w>1) insert(nm(d[w-1]),nm(d[w])),w--;
}

void cover(int l,int r){
	sum[l]^=1,sum[r+1]^=1;
}

void dfs(int x){
	for(int i=ls[x];i;i=nx[i]) 
		dfs(e[i]),c0[x]+=c0[e[i]];
	if (c0[x]) 
		cover(pnum[x].x+pnum[x].y,pnum[x].x+pnum[x].y);
	c0[x]+=c1[x];
	if (c0[x]&&fa[x]) 
		cover(pnum[fa[x]].x+pnum[fa[x]].y+1,pnum[x].x+pnum[x].y-1);
}

int main(){
	freopen("ceshi.in","r",stdin);
	freopen("ceshi1.out","w",stdout);
	for(i=0;i<=30;i++) _2[i]=1<<i;
	scanf("%d",&m);
	for(i=1;i<=m;i++) {
		scanf("%d%d%d%d",&a[i][0].x,&a[i][0].y,&a[i][1].x,&a[i][1].y);
		p[++cnt]=a[i][0],p[++cnt]=a[i][1];
	}
	sort(p+1,p+1+cnt,cmp);
	maketree();
	for(i=1;i<=m;i++) {
		c0[nm(a[i][0])]++,c0[nm(a[i][1])]++;
		c1[nm(lca(a[i][0],a[i][1]))]-=2;
	}
	dfs(nm(node(0,0)));
	int ans=0;
	for(it=sum.begin();it!=sum.end();it++) 
		ans+=(*it).second;
	ans=ans-sum[0];
	printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值