如果
i
(
B
−
C
)
+
1
≥
D
i(B-C)+1\ge D
i(B−C)+1≥D就一定有,那么接下来要求
∑
i
=
1
l
i
m
[
C
i
+
A
D
−
B
i
+
A
−
1
D
=
1
]
=
∑
i
=
1
l
i
m
C
i
+
A
D
−
B
i
+
A
−
1
D
\sum_{i=1}^{lim}[\frac{Ci+A}{D}-\frac{Bi+A-1}{D}=1]\\ =\sum_{i=1}^{lim}\frac{Ci+A}{D}-\frac{Bi+A-1}{D}
i=1∑lim[DCi+A−DBi+A−1=1]=i=1∑limDCi+A−DBi+A−1 (下取整)
这怎么做啊?
“这不是类欧板题吗?”
“对哦!这么水!”。。。“但是我不会类欧呀!Orz”
所以记录一下这个板题。
类欧几里得
大体思路就是看作一个直线
y
=
a
x
+
b
c
y=\frac{ax+b}{c}
y=cax+b下方整数点的个数。