从根上彻底理解各种变换之二:傅里叶变换

作者:aminzeng2022 

目录

2. 傅里叶变换

2.1 向量基

2.2  正变换

2.3 反变换

2.4 时域和频域分析

2.5 复数表达式

2.6复指数向量基


2. 傅里叶变换

        傅里叶级数也是一组完备的正交向量基(以下简称傅氏向量基),一些连续可积的向量(函数)可以通过向傅氏向量基投影来实现变换,即傅里叶变换。

        再次强调,函数也是特殊的向量!连续函数在某个区间可得到无穷个函数值,这些有序值就是一个向量。

2.1 向量基

        傅里叶变换的向量基为:

        1、cosx、sinx、cos⁡(2x)、sin2xcos⁡(3x)、sin⁡(3x)、⋯⋯

        傅氏向量基的维数为无穷维,具有正交性、完备性特点,但不具备归一性,进行傅氏变换时应进行归一化处理。

        傅氏向量基中的向量为函数,在一个周期内[,+π]连续取值,其维数也是无穷维。

  • 正交性

        在[,+π]上,傅氏向量基中任意两个向量的点积都为零,即两两正交,如下:

        其中,kn不相等,取值1、2、3、⋯。

  • 归一性

        上面提到,傅氏向量基中的向量的大小不为1,如下:

        对向量基进行归一化处理,得到归一化后的傅氏向量基为:

        

  • 完备性

        通过对傅里叶变换求极限,可以证明当n→∞时,

        所以说明傅氏向量基是完备的,通过傅氏向量基进行变换不存在误差。此证明过程略,感举趣的朋友可以自行在网上查找。

2.2  正变换

        变换即是将某个向量从一个坐标系(向量基1)投影到另一个坐标系(向量基2)上得到新的坐标值的过程。

        在傅里叶变换中,需变换的向量为函数f(x),函数定义在x域上,傅氏向量基也定义在x域上,因此可以开展投影操作。向量f(x)在傅氏向量基上的投影值依次为:

        对投影:

        对投影:

        对投影:

        所以傅立叶变换为:

        简化后得到:

        其中系数:

        所以f(x)在傅氏向量基上的坐标为:

2.3 反变换

        根据图1.7知道,进行反变换要捋清两组向量基(坐标系)之间的关系和坐标值,设向量g在原坐标系向量基中表示为f(x),即g= f(x),正反变换分析如下:

  • 正变换:傅里叶变换,将向量g在原坐标系中的坐标值(f(x))投影在傅氏向量基(在原坐标系中表示为1、cosx、sinx⋯⋯),得到向量g在傅氏向量基中的坐标值(a0a1b1、⋯⋯);
  • 反变换:傅里叶逆变换,将向量g在傅氏向量基中的坐标值(a0a1b1、⋯⋯)投影在原坐标系向量基(在傅氏向量基中表示为1、cosx、sinx⋯⋯),得到向量g在原坐标系中的坐标值(f(x))。

        理解的难点就在于“原坐标系向量基在傅氏向量基中表示为1、cosx、sinx⋯⋯”。理解如下:

  • 因为g在原坐标系向量基中表示为f(x),即g= f(x),也即g= f(x)∙1,坐标值是f(x),所以1就是向量基;
  • 原坐标系向量基1投影到傅氏向量基上,得到1、cosx、sinx⋯⋯
  • 所以原坐标系向量基在傅氏向量基上的坐标值也为1、cosx、sinx⋯⋯,与傅氏向量基在原坐标系上的表达式相同。 

        所以傅里叶反变换为:

        傅里叶正反变换的表达形式好像是一样的,但其实不同,正变换是求坐标值a0a1b1等,而反变换是求f(x),这一点不分清容易搞蒙。

2.4 时域和频域分析

        向量g= f(x)是在x域上的表达式,若令x(x=ωt)表示时间,那就是时间域上的表达式,向量,为表达简洁,还是令g= f(t)

        设向量周期为T,角频率为ω=2π/T,因x∈[-π,+π],所以t∈[-T/2,+T/2],对傅氏坐标值进行适当变换后得到:

        得到傅里叶变换为:

        对上式进行解读:

  • f(t)表示一个周期信号随时间变化的函数;
  • 为一个常数;
  • cosnωt为一个余弦信号,角频率为,角频率是原函数的n倍;
  • sinnωt为一个正弦信号,角频率为,角频率是原函数的n倍;
  • 傅里叶变换将一个周期信号分解为:常量(a0)+ a1×余弦信号(1倍频)+ b1×正弦信号(1倍频)+ a2×余弦信号(2倍频)+ b2×正弦信号(2倍频)+⋯⋯

        通过信号分解,可看出原信号中所含不同频率正余弦信号的比重(见图2.1),这在信号处理、控制等各领域应用十分广泛。本文目的只是帮助理解傅氏变换,对此不作深入分析。

图2.1 傅里叶时域频域分析示意(图片来自网络) 

2.5 复数表达式

        为提高傅氏变换的普适性,利用了欧拉公式对傅氏变换进行变形。

        欧拉公式:

        代入傅氏变换得:

        因对称,在-∞~+∞求和得到:

        再将欧拉公式代入坐标值求解得到变换系数:

        所以可以将统一为如下形式:

        若将T→∞,上式可运用于非周期函数,此时:

        令:

        该表达式用于求信号当中不同频率的分量,是傅里叶正变换。

        将代入得到:

        该表达式用于根据频率分量求信号时间域表达式,是傅里叶反变换。

2.6复指数向量基

        回过头看表达式,是否很像函数向量在向量基上的投影,真实情况也确实如此。

        复指数向量基:

⋯⋯、、⋯⋯

        简写为n为整数,特别注意n取值范围是-∞~+∞,若只取正整数就不具有完备性了。

  • 正交性

        证明复指数向量基正交性之前,需将根深蒂固的实数域概念扩展到复数域,以前的实数可看成虚部为零的复数。复数的投影(也就是复数的内积运算)跟实数有较大差异,具体如下:

        复数z1z1=a1+b1i

        共轭复数

        复数z2

        共轭复数

        复数z1z2的内积为:

        若复数z1z2正交(垂直),则:

        复指数的共轭复数

        下面证明复指数的正交性:

        复指数的向量内积:

        当m≠n时:

        当m=n时:

        所以复指数向量基是两两正交的。

  • 归一化

        复数向量的大小也称为模,计算方法如下:

        所以复指数向量基的大小为:

        归一化后得到复指数向量基:

⋯⋯、、⋯⋯

  • 完备性

        因复指数向量基与傅氏向量基是对应的,所以复指数向量基也是完备的。

        完备性证明省略。

  • 正变换

        正变换是求每个向量基的投影分量。

        频率为项:

        所以:

        当T→∞时:

  • 反变换

        将所有频率项加在一起,就可得到时域函数向量,但要注意向量基应是时域向量基(=1)在复指数向量基上的表示。

        将1依次向复指数向量基投影(求内积)得到:

        在n>0时:

        在n<0时:

        两部分加在一起后再加上n=0的项,就得到:

        当T→∞时,频率分辨率很小,用dω表示,写成积分形式:

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值