傅里叶变换关于函数向量的解释

看了马同学的这篇关于傅里叶变换的文章,如何理解傅里叶变换公式?,但是对于其中函数向量的部分不是很懂,想了很久,终于明白了,将过程记录下来。在记录过程中,将马同学的文章也重新编辑了一下,对其中的某些部分进行了解释。

1 对周期函数进行分解的猜想

拉格朗日等数学家发现某些周期函数可以由三角函数的和来表示,比如下图中,黑色的斜线是周期为 2 π 2\pi 2π的函数,而红色的曲线是三角函数之和,可以看出两者确实近似:
在这里插入图片描述
而另外一位数学家:傅里叶男爵猜想任一周期函数可以写成三角函数之和
傅里叶男爵

2 分解的思路

假设 f ( x ) f(x) f(x)是周期为 T T T的函数,傅里叶男爵会怎么构造三角函数的和,使之等于 f ( x ) f(x) f(x)呢?

2.1 常数项

对于 y = C , C ∈ R y=C, C\in R y=C,CR这样的常数函数:
请添加图片描述
根据常数项的定义,常数函数是周期函数,周期为任意实数。
所以分解里面应该有一个常数项。

2.2 通过 s i n ( x ) , c o s ( x ) sin(x), cos(x) sin(x),cos(x)进行分解

首先, s i n ( x ) , c o s ( x ) sin(x), cos(x) sin(x),cos(x)是周期函数,进行合理的加减组合,结果可以是周期函数,其次,它们的微积分都很简单。
然后, s i n ( x ) sin(x) sin(x)是奇函数,即:
s i n ( x ) = − s i n ( − x ) sin(x)=-sin(-x) sin(x)=sin(x)
从图像上也可以看出, s i n ( x ) sin(x) sin(x)关于原点对称,是奇函数:
请添加图片描述
而奇函数和奇函数加减只可以得到奇函数,即:
f o d d ± f o d d = f o d d f_{odd} \pm f_{odd}=f_{odd} fodd±fodd=fodd
其中, f o d d f_{odd} fodd为奇函数。
c o n s ( x ) cons(x) cons(x)为偶函数,即:
c o s ( x ) = c o s ( − x ) cos(x)=cos(-x) cos(x)=cos(x)
从图像上也可以看出, c o s ( x ) cos(x) cos(x)关于 Y Y Y轴对称
在这里插入图片描述
同样的,偶函数与偶函数加减只能得到偶函数,即:
f e v e n ± f e v e n = f e v e n f_{even} \pm f_{even}=f_{even} feven±feven=feven
其中, f e v e n f_{even} feven表示偶函数。
但是任意函数可以分解为奇函数和偶函数之和:
f ( x ) = f ( x ) + f ( − x ) 2 ± f ( x ) − f ( − x ) 2 = f o d d ± f e v e n f(x)=\frac{f(x)+f(-x)}{2} \pm \frac{f(x)-f(-x)}{2}=f_{odd}\pm f_{even} f(x)=2f(x)+f(x)±2f(x)f(x)=fodd±feven
所以同时需要 s i n ( x ) sin(x) sin(x) c o s ( x ) cos(x) cos(x)

2.3 保证组合出来的周期为 T T T

之前说了, f ( x ) f(x) f(x)是周期为 T T T的函数,我们怎么保证组合出来的函数依然为 T T T呢?
比如下面这个周期为 2 π 2\pi 2π的函数:
请添加图片描述
很显然, s i n ( x ) sin(x) sin(x)的周期也是 2 π 2\pi 2π
请添加图片描述
s i n ( 2 x ) sin(2x) sin(2x)的周期也是 2 π 2\pi 2π,虽然最小周期是 π \pi π
在这里插入图片描述
很显然, s i n ( n x ) , n ∈ N sin(nx),n\in \Bbb N sin(nx)nN的周期都是 2 π 2\pi 2π:
请添加图片描述
更一般的,如果 f ( x ) f(x) f(x)的周期为 T T T,那么:
s i n ( 2 π n T x ) , c o s ( 2 π n T x ) , n ∈ N sin(\frac{2\pi n}{T}x), cos(\frac{2\pi n}{T}x), n\in \Bbb N sin(T2πnx),cos(T2πnx),nN
这些函数的周期都为 T T T
将这些函数进行加减,就保证了得到的函数的周期也是 T T T

2.4 调整振幅

现在有一堆周期为 2 π 2\pi 2π的函数了,比如说 s i n ( x ) , s i n ( 2 x ) , s i n ( 3 x ) , s i n ( 4 x ) , s i n ( 5 x ) sin(x),sin(2x),sin(3x),sin(4x),sin(5x) sin(x),sin(2x),sin(3x),sin(4x),sin(5x)
在这里插入图片描述
通过调整振幅可以让它们慢慢接近目标函数,比如 s i n ( x ) sin(x) sin(x)看起来处处都比目标低一些
在这里插入图片描述
把它的振幅增加一倍:
请添加图片描述
2 s i n ( x ) 2sin(x) 2sin(x)有的地方超出去了,从周期为 2 π 2\pi 2π的函数中选择一个,减去一点:
在这里插入图片描述
调整振幅,加加减减,我们可以慢慢接近目标函数:
请添加图片描述

2.5 小结

综上,构造出来的三角函数之和大概类似于下面的样子:
f ( x ) = C + ∑ n = 1 ∞ ( a n c o s ( 2 π n T x ) + b n s i n ( 2 π n T x ) ) , n ∈ N f(x)=C+\sum_{n=1}^{\infty}(a_n cos(\frac{2\pi n}{T}x)+b_n sin(\frac{2\pi n}{T}x)), n \in \Bbb N f(x)=C+n=1(ancos(T2πnx)+bnsin(T2πnx)),nN
这样就符合之前的分析:

  • 有常数项
  • 奇函数和偶函数可以组合出任意函数
  • 周期为 T T T
  • 调整振幅,逼近原函数
    之前的分析还比较,后面开始有单难度,即,怎么确定这三个系数:
    C , a n , b n C, a_n, b_n C,an,bn
    说是3个系数,其实是很多系数,因为 n ∈ N n \in \Bbb N nN
    贴一张动图,感受一下
    在这里插入图片描述

3 s i n ( x ) sin(x) sin(x) c o s ( x ) cos(x) cos(x)的另外一种表示方法

直接不好确定,要迂回一下,先稍微介绍一下什么是 e i ω t e^{i\omega t} et

3.1 e i ω t e^{i\omega t} et

看到复数也不要怕,可以参加马同学另一篇关于复数的文章"如何通俗易懂的解释欧拉公式",看到类似于 e i θ e^{i\theta} eiθ这种就应该想到复平面上的一个夹角为 θ \theta θ的向量:
请添加图片描述
那么当 θ \theta θ不再是常数,二是代表时间变量的 t t t的时候:
e i θ → e i ω t e^{i\theta} \to e^{i\omega t} eiθet
其中, ω \omega ω为角速度, t t t为时间
随着时间 t t t的流逝,从0开始增长,这个向量就会旋转起来, 2 π ω \frac{2\pi}{\omega} ω2π秒就会旋转一圈,即 T = 2 π ω T=\frac{2\pi}{\omega} T=ω2π:
请添加图片描述

3.2 通过 e i ω t e^{i\omega t} et表示 s i n ( t ) , c o s ( t ) sin(t), cos(t) sin(t),cos(t)

根据欧拉公式,有:
e i t = c o s ( t ) + i ⋅ s i n ( t ) e^{it}=cos(t)+i \cdot sin(t) eit=cos(t)+isin(t)
所以,在时间 t t t轴上,把 e i t e^{it} eit向量的虚部也就是(纵坐标)记录下来,得到的就是 s i n ( t ) sin(t) sin(t):
请添加图片描述
代数上用 I m Im Im表示虚部:
s i n ( t ) = I m ( e i t ) sin(t)=Im(e^{it}) sin(t)=Im(eit)
在时间 t t t轴上,把 e i 2 t e^{i2t} ei2t向量的需不记录下来,得到的就是 s i n ( 2 t ) sin(2t) sin(2t)请添加图片描述
如果在时间 t t t轴上,把 e i t e^{it} eit的实部(横坐标)记录下来,得到的就是 c o s ( t ) cos(t) cos(t)的曲线:
-请添加图片描述
代数上用 R e Re Re表示实部:
c o s ( t ) = R e ( e i t ) cos(t)=Re(e^{it}) cos(t)=Re(eit)
e i ω t e^{i\omega t} et的图像中,可以观察到旋转的频率,所以称为频域;而在 s i n ( t ) sin(t) sin(t)中,可以看到流逝的时间,所以称为时域:
请添加图片描述

4通过频域来求系数

4.1 函数是线性组合

假设有这么个函数:
g ( t ) = s i n ( t ) + s i n ( 2 t ) g(t)=sin(t)+sin(2t) g(t)=sin(t)+sin(2t)
是一个 T = 2 π T=2\pi T=2π的函数:
请添加图片描述
如果转到频域去,那么它们是下面这个复数函数的虚部:
g ( t ) = I m ( e i t + e i 2 t ) g(t)=Im(e^{it}+e^{i2t}) g(t)=Im(eit+ei2t)
先看看 e i θ + e i 2 θ e^{i\theta}+e^{i2\theta} eiθ+ei2θ,其中, θ \theta θ是常数,很显然这是两个向量之和:
请添加图片描述
现在让他们动起来,把 θ \theta θ变成流逝的时间 t t t,那么就变成了选装的向量和:
请添加图片描述
很显然,如果把虚部记录下来,就得到 g ( t ) g(t) g(t)
请添加图片描述

4.2 函数向量

前面画了一大堆图,就想说明一个观点, e i ω t e^{i\omega t} et是向量,并且是旋转向量。
而根据欧拉公式,有
e i ω t = c o s ( ω t ) + i ⋅ s i n ( ω t ) e^{i\omega t}=cos(\omega t)+i\cdot sin(\omega t) et=cos(ωt)+isin(ωt)
从图像上看:
在这里插入图片描述
所以 s i n ( ω t ) , c o s ( ω t ) sin(\omega t),cos(\omega t) sin(ωt)cos(ωt)也是向量。
e i ω t , s i n ( ω t ) , c o s ( ω t ) e^{i\omega t},sin(\omega t),cos(\omega t) et,sin(ωt)cos(ωt)称之为函数向量,并且函数向量的点积是这么定义的:
f ( x ) ⋅ g ( x ) = ∫ 0 T f ( x ) g ( x ) d x f(x)\cdot g(x)=\int_{0}^{T}f(x)g(x)d_x f(x)g(x)=0Tf(x)g(x)dx,其中, f ( x ) , g ( x ) f(x),g(x) f(x),g(x)是函数向量, T T T f ( x ) , g ( x ) f(x),g(x) f(x)g(x)的周期。
关于函数向量,关于函数向量的点积,更严格的讨论可以参考无限维的希尔伯特空间

4.3 g ( t ) g(t) g(t)是线性组合

虽然比较仓促,但是让我们先接受 s i n ( t ) , s i n ( 2 t ) sin(t),sin(2t) sin(t),sin(2t)是函数向量,那么它们的线性组合得到的也是函数向量:
g ( t ) = s i n ( t ) + s i n ( 2 t ) g(t)=sin(t)+sin(2t) g(t)=sin(t)+sin(2t)
根据刚才的点积的定义有:
s i n ( t ) ⋅ s i n ( 2 t ) = ∫ 0 2 π s i n ( t ) s i n ( 2 t ) d t = 0 sin(t)\cdot sin(2t)=\int_{0}^{2\pi}sin(t)sin(2t)d_t=0 sin(t)sin(2t)=02πsin(t)sin(2t)dt=0
s i n ( t ) ⋅ s i n ( 2 t ) = 0 sin(t)\cdot sin(2t)=0 sin(t)sin(2t)=0说明这两个函数向量正交,线性无关,是正交基,如果写成这样:
g ( t ) = 1 ⋅ s i n ( t ) + 1 ⋅ s i n ( 2 t ) g(t)=1\cdot sin(t)+1\cdot sin(2t) g(t)=1sin(t)+1sin(2t)
可以理解为 g ( t ) g(t) g(t)在正交基 s i n t ( t ) , s i n ( 2 t ) sint(t),sin(2t) sint(t),sin(2t)下的坐标为(1,1)

关于这部分的理解,总感觉不是很易懂,下面讲一下我的理解
对于函数 g ( t ) = s i n ( t ) + s i n ( 2 t ) , t ∈ N g(t)=sin(t)+sin(2t), t\in \Bbb N g(t)=sin(t)+sin(2t),tN
可以换种写法
g ( t 0 ) = s i n ( t 0 ) + s i n ( 2 t 0 ) g(t_0)=sin(t_0)+sin(2t_0) g(t0)=sin(t0)+sin(2t0)
g ( t 1 ) = s i n ( t 1 ) + s i n ( 2 t 1 ) g(t_1)=sin(t_1)+sin(2t_1) g(t1)=sin(t1)+sin(2t1)
g ( t 2 ) = s i n ( t 2 ) + s i n ( 2 t 2 ) g(t_2)=sin(t_2)+sin(2t_2) g(t2)=sin(t2)+sin(2t2)
g ( t 3 ) = s i n ( t 3 ) + s i n ( 2 t 3 ) g(t_3)=sin(t_3)+sin(2t_3) g(t3)=sin(t3)+sin(2t3)
g ( t 4 ) = s i n ( t 4 ) + s i n ( 2 t 4 ) g(t_4)=sin(t_4)+sin(2t_4) g(t4)=sin(t4)+sin(2t4)
因为 t ∈ N t \in \Bbb N tN,所以只是举了几个简单的例子。
[ g ( t 0 ) g ( t 1 ) g ( t 2 ) g ( t 3 ) g ( t 4 ) ] = [ s i n t ( 0 ) s i n ( t 1 ) s i n ( t 2 ) s i n ( t 3 ) s i n ( t 4 ) ] + [ s i n ( 2 t 0 ) s i n ( 2 t 1 ) s i n ( 2 t 2 ) s i n ( 2 t 3 ) s i n ( 2 t 4 ) ] \begin{bmatrix}g(t_0) \\ g(t_1)\\g(t_2)\\g(t_3)\\g(t_4)\end{bmatrix} =\begin{bmatrix}sint(_0)\\sin(t_1)\\sin(t_2)\\sin(t_3)\\sin(t_4) \end{bmatrix}+\begin{bmatrix}sin(2t_0)\\sin(2t_1)\\sin(2t_2)\\sin(2t_3)\\sin(2t_4) \end{bmatrix} g(t0)g(t1)g(t2)g(t3)g(t4) = sint(0)sin(t1)sin(t2)sin(t3)sin(t4) + sin(2t0)sin(2t1)sin(2t2)sin(2t3)sin(2t4)
t t t是连续的,所以上式中的向量应该是有无限多个,这里只列举了几个离散的
由此可以看出 g ( t ) , s i n ( t ) , s i n ( 2 t ) g(t),sin(t),sin(2t) g(t),sin(t),sin(2t)都可以看出函数向量,并且 s i n ( t ) , s i n ( 2 t ) sin(t),sin(2t) sin(t),sin(2t)正交

4.4 如何在正交基坐标系下的坐标

我们先来看个例子,假设 w → = 2 u → + 3 v → \overrightarrow{w}=2\overrightarrow{u}+3\overrightarrow{v} w =2u +3v
其中 u → = [ − 1 1 ] \overrightarrow{u}= \begin{bmatrix}-1\\ 1 \end{bmatrix} u =[11]
v → = [ 1 1 ] \overrightarrow{v}= \begin{bmatrix}1\\ 1 \end{bmatrix} v =[11]
通过点积:
u → ⋅ v → = 0 \overrightarrow{u}\cdot \overrightarrow{v} =0 u v =0可以知道, u → \overrightarrow{u} u v → \overrightarrow{v} v 相互垂直
请添加图片描述
w → \overrightarrow{w} w 在笛卡尔坐标系中的坐标为 ( 2 , 3 ) (2,3) (2,3),其中在正交基 u → \overrightarrow{u} u v → \overrightarrow{v} v 下的坐标可以通过以下方法来求得:
w → ⋅ u → u → ⋅ u → = ( 1 , 5 ) ⋅ ( − 1 , 1 ) ( − 1 , 1 ) ( − 1 , 1 ) = 2 \frac{\overrightarrow{w} \cdot \overrightarrow{u}}{\overrightarrow{u} \cdot \overrightarrow{u}}=\frac{(1,5)\cdot(-1, 1)}{(-1, 1)(-1,1)}=2 u u w u =(1,1)(1,1)(1,5)(1,1)=2
这么做的原因,如下图所示,为高中学的向量知识。并且只有在正交基下才可以这么做。更好的解释可以参考李泽光老师的知乎文章复数形式傅里叶变换的物理意义中,相位究竟指的是什么?
在这里插入图片描述

4.5 如何求 g ( t ) g(t) g(t) s i n ( t ) sin(t) sin(t) s i n ( 2 t ) sin(2t) sin(2t)这组正交基下的坐标

对于 g ( t ) = s i n ( t ) + s i n ( 2 t ) g(t)=sin(t)+sin(2t) g(t)=sin(t)+sin(2t)
由4.4的内容可知, g ( t ) g(t) g(t) s i n ( t ) sin(t) sin(t)上的分量如下
g ( t ) ⋅ s i n ( t ) s i n ( t ) ⋅ s i n ( t ) = ∫ 0 2 π g ( t ) ⋅ s i n ( t ) d t ∫ 0 2 π s i n 2 ( t ) d t = 1 \frac{g(t)\cdot sin(t)}{sin(t)\cdot sin(t)}=\frac{\int_{0}^{2\pi}g(t)\cdot sin(t)d_t}{\int_{0}^{2\pi}sin^2(t)d_t}=1 sin(t)sin(t)g(t)sin(t)=02πsin2(t)dt02πg(t)sin(t)dt=1
g ( t ) g(t) g(t) s i n ( 2 t ) sin(2t) sin(2t)上的分量如下
g ( t ) ⋅ s i n ( 2 t ) s i n ( 2 t ) ⋅ s i n ( 2 t ) = ∫ 0 2 π g ( t ) ⋅ s i n ( 2 t ) d t ∫ 0 2 π s i n 2 ( 2 t ) d t = 1 \frac{g(t)\cdot sin(2t)}{sin(2t)\cdot sin(2t)}=\frac{\int_{0}^{2\pi}g(t)\cdot sin(2t)d_t}{\int_{0}^{2\pi}sin^2(2t)d_t}=1 sin(2t)sin(2t)g(t)sin(2t)=02πsin2(2t)dt02πg(t)sin(2t)dt=1
由此可得:
g ( t ) = s i n ( t ) + s i n ( 2 t ) g(t)=sin(t)+sin(2t) g(t)=sin(t)+sin(2t)

4.6 更一般的

对于之前的假设
f ( x ) = C + ∑ n = 1 ∞ ( a n c o s ( 2 π n T x ) + b n s i n ( 2 π n T x ) ) , n ∈ N f(x)=C+\sum_{n=1}^{\infty}(a_n cos(\frac{2\pi n}{T}x)+b_n sin(\frac{2\pi n}{T}x)), n \in \Bbb N f(x)=C+n=1(ancos(T2πnx)+bnsin(T2πnx)),nN
可以改写为:
f ( x ) = C ⏟ 基 1 下的坐标 + ∑ n = 1 ∞ ( a n ⏟ 对应基的坐标 c o s ( 2 π n T x ) + b n ⏟ 对应基的坐标 s i n ( 2 π n T x ) ) , n ∈ N f(x)=\underbrace{C}_{基1下的坐标}+\sum_{n=1}^{\infty}(\underbrace{a_n }_{对应基的坐标}cos(\frac{2\pi n}{T}x)+\underbrace{b_n }_{对应基的坐标} sin(\frac{2\pi n}{T}x)), n \in \Bbb N f(x)=1下的坐标 C+n=1(对应基的坐标 ancos(T2πnx)+对应基的坐标 bnsin(T2πnx)),nN
也就是说向量 f ( x ) f(x) f(x)将要分解到 C → , a 0 → , b 0 → , a 1 → , b 1 → ⋯ \overrightarrow{C},\overrightarrow{a_0},\overrightarrow{b_0},\overrightarrow{a_1},\overrightarrow{b_1}\cdots C ,a0 ,b0 ,a1 ,b1 上,因此这组正交基为 1 , c o s ( 2 π n T x ) , s i n ( 2 π n T x ) ) {1, cos(\frac{2\pi n}{T}x),sin(\frac{2\pi n}{T}x))} 1,cos(T2πnx),sin(T2πnx))
这组正交基有很多,而非3个
可以得到
a n = ∫ 0 T f ( x ) c o s ( 2 π n T x ) d x ∫ 0 T c o s 2 ( 2 π n T x ) d x = 2 T ∫ 0 T f ( x ) c o s ( 2 π n T x ) d x a_n=\frac{\int_{0}^{T}f(x)cos(\frac{2\pi n}{T}x)dx}{\int_{0}^{T}cos^2(\frac{2\pi n}{T}x)dx}=\frac{2}{T}\int_{0}^{T}f(x)cos(\frac{2\pi n}{T}x)dx an=0Tcos2(T2πnx)dx0Tf(x)cos(T2πnx)dx=T20Tf(x)cos(T2πnx)dx
b n = ∫ 0 T f ( x ) s i n ( 2 π n T x ) d x ∫ 0 T s i n 2 ( 2 π n T x ) d x = 2 T ∫ 0 T f ( x ) s i n ( 2 π n T x ) d x b_n=\frac{\int_{0}^{T}f(x)sin(\frac{2\pi n}{T}x)dx}{\int_{0}^{T}sin^2(\frac{2\pi n}{T}x)dx}=\frac{2}{T}\int_{0}^{T}f(x)sin(\frac{2\pi n}{T}x)dx bn=0Tsin2(T2πnx)dx0Tf(x)sin(T2πnx)dx=T20Tf(x)sin(T2πnx)dx
C C C也可以求出来

在这里插入图片描述
因此
C = a 0 2 C=\frac{a_0}{2} C=2a0
至此,傅里叶级数的公式推导出来了,就像教材里的那样了

4.7复数形式的傅里叶级数

这部分公式推导可以参考博客:傅里叶级数 三角形式 到 复数形式
或者百度文库的文章:傅里叶级数的复数形式
最终的形式为 f ( x ) = ∑ n = − ∞ ∞ c n ⋅ e i 2 π n x T f(x)=\sum_{n=-\infty}^{\infty}c_n \cdot e^{i\frac{2\pi nx}{T}} f(x)=n=cneiT2πnx
其中:
c n = 1 T ∫ x 0 x 0 + T f ( x ) ⋅ e − i 2 π n x T d x c_n=\frac{1}{T}\int_{x_0}^{x_0+T}f(x)\cdot e^{-i\frac{2\pi nx}{T}}dx cn=T1x0x0+Tf(x)eiT2πnxdx

5傅里叶级数到傅里叶变换

里叶系列(二)傅里叶变换的推导
从傅立叶级数到傅立叶变换

  • 8
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值