算法训练:二分查找(1.22)

二分查找(1.22)

这里主要是对二分查找算法对于寻找左右侧边界问题的应用,关于二分查找的详细介绍,可以看 我写了首诗,把二分搜索算法变成了默写题。因为文章中对于左右侧边界并未做详细介绍,所以在这补充下知识点。

左侧边界:

  1. 如果数组中存在重复的数据target,那么target第一个出现的位置就是target的左侧边界。

  2. 如果数组中不存在重复的target值,那么第一个比target大的值的前一个位置就是左侧边界。(有点绕,但是事实的确如此,只是我现在对于这个问题思考较浅,只能这样描述)

右侧边界:

  1. 如果数组中存在重复的数据target,那么target最后一个出现的位置就是target的右侧边界。

现在用两种区间判定方案来处理左右侧边界。

寻找左侧边界

(左闭右开):

    public static int left_bound(int[] nums, int target){
        int left = 0;
        int right = nums.length;

        while (left < right){
            int mid = left + (right - left)/2;
            if(nums[mid] == target){//1.mid就是左侧边界 2.mid左侧还有重复target
                right = mid;//缩小左侧查询区间
            }else if(nums[mid] < target){
                left = mid + 1;
            }else if(nums[mid] > target){
                right = mid;
            }
        }
        
        if(left == nums.length) return -1;
        return (nums[left] == target) left : -1;
    }

(左闭右闭)

    public static int left_bound(int[] nums, int target){
        int left = 0;
        int right = nums.length -1;

        while (left <= right){
            int mid = left + (right - left)/2;
            if(nums[mid] == target){//1.mid就是左侧边界 2.mid左侧还有重复target
                right = mid -1;//缩小左侧查询区间
            }else if(nums[mid] < target){
                left = mid + 1;
            }else if(nums[mid] > target){
                right = mid -1;
            }
        }
        if(left == nums.length) return -1;
        return (nums[left] == target) left : -1;
    }

寻找右侧边界

(左闭右开)

    public static int right_bound(int[] nums, int target){
        int left = 0;
        int right = nums.length;

        while (left < right){
            int mid = left + (right - left)/2;
            if(nums[mid] == target){
                left = mid + 1;
            }else if(nums[mid] < target){
                left = mid + 1;
            }else if(nums[mid] > target){
                right = mid;
            }
        }
 
    }

(左闭右闭)

    public static int right_bound(int[] nums, int target){
        int left = 0;
        int right = nums.length -1;

        while (left <= right){
            int mid = left + (right - left)/2;
            if(nums[mid] == target){
                left = mid + 1;
            }else if(nums[mid] < target){
                left = mid + 1;
            }else if(nums[mid] > target){
                right = mid -1;
            }
        }
        if((left - 1)<0) return -1;
        return nums[left -1] == target ? (left -1) : -1;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值