pands 返回某一列出现次数最多的元素(即返回 value_counts() 统计个数后 series 结构中的最大值对应的索引)

本文介绍了一种对招聘数据进行探索性分析的方法,包括数据加载、基本信息查看、统计各岗位招聘数量、筛选特定日期及地点的招聘信息等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

业务场景:

招聘数据探索分析
1、读取数据并存为一个名叫job_info的据框。
2、将列命名为:['公司’,’岗位’,’工作地点’,’工资’,’发布日期]。
3、哪个岗位招聘需求最多?
4、取出9月3日发布的招聘信息。
5、找出工作地点在深圳的数据分析师招聘信息。

        第三问哪个岗位招聘需求最多?首先用value_counts() 统计岗位这一列每个元素出现的个数,返回结果是Series

       

在这里插入图片描述

       

核心代码

goal = Series.idxmax()

       

示例

import pandas as pd

job_info = pd.read_csv('job_info.csv',header=None,names=('公司','岗位','工作地点','工资','发布日期'),encoding = 'gbk')
a = job_info.loc[:,'岗位'].value_counts()   #统计岗位这一列每个元素出现的个数
b = a.idxmax()  # 找出招聘需求最多的岗位
data_9_3 = job_info[job_info['发布日期'] == '09-03']    # 取出9月3日的招聘信息
data5 = job_info[(job_info['工作地点'] == '深圳') & (job_info['岗位'] == '数据分析师')]   #找出工作地点在深圳的数据分析师招聘信息
<think>好的,用户的问题是关于如何在Pandas中获取同一列中重复的行索引。我需要仔细分析用户的需求,并参考提供的引用内容来给出正确的解决方案。 首先,用户提到“获取同一列中所有相同的行号”,也就是在某一列中找到重复的,并返回这些重复所在行的索引。根据引用[1]中的方法,使用df.duplicated(keep=False)可以标记所有重复的行,包括所有重复出现的实例。但引用[1]处理的是整个DataFrame的重复行,而用户的问题集中在单列上,所以需要调整方法。接着,引用[2]提到使用groupby来获取唯一,并结合.groups来得到索引。这可能适用于按列分组的情况。对于单列,可以按该列分组,然后收集每个组的索引。然后,用户可能需要将所有重复的(出现次数大于1的)的行索引提取出来。例如,对于某一列中的某个,如果出现了多次,那么需要将这些行的索引汇总成一个列表或元组。 可能的步骤是: 1.使用groupby在该列上进行分组。2.对每个组应用函数,检查组的长度是否大于1,如果是,则记录其索引。3.将结果转换为所需的格式,比如列表中的元组。 需要验证这个方法是否正确。例如,假设列名为'col',可以这样做:df.groupby('col').apply(lambdax:tuple(x.index)if len(x)>1 elseNone).dropna().tolist()这样会得到一个列表,每个元素是重复索引组成的元组。但需要确保只保留有重复的组。另外,引用[1]中的例子使用了所有列进行分组,但用户只需要单列,所以应调整分组依据为特定的列名。还需要注意,用户可能希望得到每个重复对应的所有行索引,而不仅仅是第一次或最后一次出现的情况。因此,使用groupby并收集所有索引是合适的。 最后,代码示例需要清晰,可能需要分步说明,比如先筛选重复,再进行分组处理,确保用户能够理解每一步的作用。</think>在Pandas中获取某一列中所有重复的行索引,可以通过以下步骤实现: ### 1. 筛选重复并分组 使用`groupby`对目标列分组,并筛选出出现次数大于1的组: ```python import pandas as pd # 示例数据 df = pd.DataFrame({ 'col': [0, 2, 2, 0, 3, 3, 3] }) # 按列分组,并提取索引 result = ( df.groupby('col') # 按目标列分组 .apply(lambda x: tuple(x.index) if len(x) > 1 else None) # 提取重复索引 .dropna() # 移除非重复项 .tolist() # 转换为列表 ) print(result) # 输出:[(0, 3), (2,), (4, 5, 6)] ``` ### 2. 优化输出格式(可选) 若需过滤仅出现两次以上的,或调整输出格式: ```python # 仅保留出现两次以上的 filtered_result = [indices for indices in result if len(indices) >= 2] print(filtered_result) # 输出:[(0, 3), (4, 5, 6)] ``` ### 原理解释 - `groupby('col')`: 按指定列的分组,每个组包含相同的行[^2] - `apply(lambda x: ... )`: 对每个组检查行数,若大于1则返回索引元组 - `dropna()`: 移除未重复的组(返回`None`的组)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

中南自动化学院至渝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值