战争中保持各个城市间的连通性非常重要。本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报。注意:若该国本来就不完全连通,是分裂的k个区域,而失去一个城市并不改变其他城市之间的连通性,则不要发出警报。
输入格式:
输入在第一行给出两个整数N
(0 < N
≤ 500)和M
(≤ 5000),分别为城市个数(于是默认城市从0到N
-1编号)和连接两城市的通路条数。随后M
行,每行给出一条通路所连接的两个城市的编号,其间以1个空格分隔。在城市信息之后给出被攻占的信息,即一个正整数K
和随后的K
个被攻占的城市的编号。
注意:输入保证给出的被攻占的城市编号都是合法的且无重复,但并不保证给出的通路没有重复。
输出格式:
对每个被攻占的城市,如果它会改变整个国家的连通性,则输出Red Alert: City k is lost!
,其中k
是该城市的编号;否则只输出City k is lost.
即可。如果该国失去了最后一个城市,则增加一行输出Game Over.
。
输入样例:
5 4
0 1
1 3
3 0
0 4
5
1 2 0 4 3
输出样例:
City 1 is lost.
City 2 is lost.
Red Alert: City 0 is lost!
City 4 is lost.
City 3 is lost.
Game Over.
先用并查集求一下初始连通分支数 C ,没攻占一个城市就重新求一次连通分支数 C1(注意跳过被攻占城市的边),每次将C1与C比较,输出相应的结果。C1 C有3种情况,
一、 C1=C 表明被攻占的城市在一个环里,被攻占了也不影响原图的连通性
二、 C1=C+1 表明被攻占的城市只连接了一个城市,即图的最外层
三、C1-C >1, 表明被攻占的城市至少连接两个城市,被攻占后连通分量至少增加2.
易错:1.注意城市被攻占并不是要真的删除它,而是不去统计它连接的边。
2.每次都是与攻占该城市前的前的连通分量比较,注意更新初始的连通分量。
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
pair<int,int>p[5500];
int pre[550];
int v[550];
int count(int n)
{
int c=0;
for(int i=0;i<n;i++)
{
if(v[i]==i)
c++;
}
return c;
}
int find(int root)
{
if(v[root]==root)
return root;
else
return v[root]=find(v[root]);
}
void Union(int r1,int r2)
{
int root1=find(r1);
int root2=find(r2);
if(root1!=root2)
v[root1]=root2;
}
int main()
{
int N,M;
cin>>N>>M;
for(int j=0;j<550;j++)
v[j]=j;
memset(pre,0,sizeof(pre));
for(int i=0;i<M;i++)
{
cin>>p[i].first>>p[i].second;
Union(p[i].first,p[i].second);
}
int r1=count(N);
int k;
cin>>k;
while(k--)
{
int pr;
cin>>pr;
pre[pr]=1;
for(int j=0;j<550;j++)
v[j]=j;
for(int j=0;j<M;j++)
{
if(pre[p[j].first]==1||pre[p[j].second]==1)
continue;
Union(p[j].first,p[j].second);
}
int r2=count(N);
if(r1+1==r2||r1==r2)
cout<<"City "<<pr<<" is lost."<<endl;
else
cout<<"Red Alert: City "<<pr<<" is lost!"<<endl;
r1=r2;
}
r1=count(N);
if(r1==N)
cout<<"Game Over."<<endl;
return 0;
}