acwing175电路维修

这篇博客探讨了acwing175电路维修问题,通过将电路视为图,利用最短路径算法来解决。文章指出,由于边权只有0和1,所以在扩展节点时,边权为0的节点放入队首,边权为1的节点放入队尾,使用deque保持广度优先搜索队列的特性。虽然没有使用vis数组,但由于满足特定条件,能确保每次出队的节点都是最短路径,因此算法的时间复杂度为O(r*c),其中r和c分别代表行数和列数。

看成一张图 如果是原来摆成的状态意为着边权为0,否则为1,在跑最短路

这里很特殊的一点是只有0,1所以我们扩展的时候 若边为0 则将扩展的点插入到队首 否则插入到队尾 这需要一个deque 但是可以维护广搜队列任意时刻的两段性和单调性
没有vis数组 因为不能保证第一次扩展到就是最短 但是由于满足广搜的上述两条性质 可以保证每次出队的时候距离就是最短距离(仔细想想)所以复杂度还是O(r*c)的(因为扩展的代价几乎可以不计)

代码

//我的代码把所有位置编成了一维的序号
//事实上完全可以用二维 代码可能可以更短
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>

using namespace std;
int r,c;
char s[505];
int h[300005],tot;
int dis[300005];
struct edge
{
	int to,nxt,v;
}e[1200005];
void add_edge(int x,int y,int v)
{
	e[++tot].to=y;
	e[tot].nxt=h[x];
	e[tot].v=v;
	h[x]=tot;
}
deque<int>dq;
void bfs()
{
	while(!dq.empty())
	{
		int x=dq.front();
		dq.pop_front();
		if(x==(r+1)*(c+1))
		{
			printf("%d\n",dis[x]);
			return;
		}
		for(int i=h[x];i;i=e[i].nxt)
		{
			if(dis[e[i].to]>dis[x]+e[i].v)
			{
				dis[e[i].to]=dis[x]+e[i].v;
				if(e[i].v)dq.push_back(e[i].to);
				else dq.push_front(e[i].to);
			}
		}
	}
	printf("NO SOLUTION\n");
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		tot=0;
		memset(h,0,sizeof(h));
		scanf("%d%d",&r,&c);
		for(int i=1;i<=r;++i)
		{
			scanf("%s",s+1);
			for(int j=1;j<=c;++j)
			{
				if(s[j]=='/')
				{
					add_edge((i-1)*(c+1)+j+1,i*(c+1)+j,0);
					add_edge(i*(c+1)+j,(i-1)*(c+1)+j+1,0);
					add_edge((i-1)*(c+1)+j,i*(c+1)+j+1,1);
					add_edge(i*(c+1)+j+1,(i-1)*(c+1)+j,1);
				}
				else
				{
					add_edge((i-1)*(c+1)+j+1,i*(c+1)+j,1);
					add_edge(i*(c+1)+j,(i-1)*(c+1)+j+1,1);
					add_edge((i-1)*(c+1)+j,i*(c+1)+j+1,0);
					add_edge(i*(c+1)+j+1,(i-1)*(c+1)+j,0);
				}
			}
		}
		while(!dq.empty())
		{
			dq.pop_front();
		}
		memset(dis,0x7f,sizeof(dis));
		dis[1]=0;
		for(int i=h[1];i;i=e[i].nxt)
		{
			dq.push_back(e[i].to);
			dis[e[i].to]=e[i].v;
		}
		bfs();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值