看成一张图 如果是原来摆成的状态意为着边权为0,否则为1,在跑最短路
这里很特殊的一点是只有0,1所以我们扩展的时候 若边为0 则将扩展的点插入到队首 否则插入到队尾 这需要一个deque 但是可以维护广搜队列任意时刻的两段性和单调性
没有vis数组 因为不能保证第一次扩展到就是最短 但是由于满足广搜的上述两条性质 可以保证每次出队的时候距离就是最短距离(仔细想想)所以复杂度还是O(r*c)的(因为扩展的代价几乎可以不计)
代码
//我的代码把所有位置编成了一维的序号
//事实上完全可以用二维 代码可能可以更短
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int r,c;
char s[505];
int h[300005],tot;
int dis[300005];
struct edge
{
int to,nxt,v;
}e[1200005];
void add_edge(int x,int y,int v)
{
e[++tot].to=y;
e[tot].nxt=h[x];
e[tot].v=v;
h[x]=tot;
}
deque<int>dq;
void bfs()
{
while(!dq.empty())
{
int x=dq.front();
dq.pop_front();
if(x==(r+1)*(c+1))
{
printf("%d\n",dis[x]);
return;
}
for(int i=h[x];i;i=e[i].nxt)
{
if(dis[e[i].to]>dis[x]+e[i].v)
{
dis[e[i].to]=dis[x]+e[i].v;
if(e[i].v)dq.push_back(e[i].to);
else dq.push_front(e[i].to);
}
}
}
printf("NO SOLUTION\n");
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
tot=0;
memset(h,0,sizeof(h));
scanf("%d%d",&r,&c);
for(int i=1;i<=r;++i)
{
scanf("%s",s+1);
for(int j=1;j<=c;++j)
{
if(s[j]=='/')
{
add_edge((i-1)*(c+1)+j+1,i*(c+1)+j,0);
add_edge(i*(c+1)+j,(i-1)*(c+1)+j+1,0);
add_edge((i-1)*(c+1)+j,i*(c+1)+j+1,1);
add_edge(i*(c+1)+j+1,(i-1)*(c+1)+j,1);
}
else
{
add_edge((i-1)*(c+1)+j+1,i*(c+1)+j,1);
add_edge(i*(c+1)+j,(i-1)*(c+1)+j+1,1);
add_edge((i-1)*(c+1)+j,i*(c+1)+j+1,0);
add_edge(i*(c+1)+j+1,(i-1)*(c+1)+j,0);
}
}
}
while(!dq.empty())
{
dq.pop_front();
}
memset(dis,0x7f,sizeof(dis));
dis[1]=0;
for(int i=h[1];i;i=e[i].nxt)
{
dq.push_back(e[i].to);
dis[e[i].to]=e[i].v;
}
bfs();
}
return 0;
}
这篇博客探讨了acwing175电路维修问题,通过将电路视为图,利用最短路径算法来解决。文章指出,由于边权只有0和1,所以在扩展节点时,边权为0的节点放入队首,边权为1的节点放入队尾,使用deque保持广度优先搜索队列的特性。虽然没有使用vis数组,但由于满足特定条件,能确保每次出队的节点都是最短路径,因此算法的时间复杂度为O(r*c),其中r和c分别代表行数和列数。
841

被折叠的 条评论
为什么被折叠?



