一、互斥锁
进程之间数据不共享,但是共享一套文件系统。所以访问同一个文件,或同一个打印终端是没有问题的,而共享带来的是竞争,竞争带来的结果就是错乱,如下:
from multiprocessing import Process
import os,time
def work():
print('%s is running' %os.getpid())
time.sleep(2)
print('%s is done' %os.getpid())
if __name__ == '__main__':
for i in range(3):
p=Process(target=work)
p.start()
如何控制,就是加锁处理。而互斥锁的意思就是互相排斥,如果把多个进程比喻为多个人,互斥锁的工作原理就是多个人都是争抢同一个资源:卫生间,一个人抢到卫生间后上一把锁,其他人都要等着,等到这个完成任务后释放锁,其他人才有可能有一个抢到…
所以互斥锁的原理就是:把并发改成串行,降低了效率,但保证了数据安全不错乱
# 把并发改成串行,牺牲了效率,但避免了竞争
from multiprocessing import Process,Lock
import time,os
def work(lock):
lock.acquire() # 加锁
print('%s is running' %os.getpid())
time.sleep(2)
print('%s is done' %os.getpid())
lock.release() # 释放锁
if __name == '__main__':
lock = Lock()
for i in range(3):
p = Process(target=work,args=(lock,))
p.start()
二、模拟抢票练习
多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务
# 文件db.txt的内容为:{“count”:1}
# 注意一定要用双引号,不然json无法识别
from multiprocessing import Process
import time,json
def search(name):
dic = json.load(open('db.txt'))
time.sleep(1)
print('%s 查到剩余票数 %s' % (name,dic['count']))
def get(name):
dic = json.load(open('db.txt'))
time.sleep(1) # 模拟读数据的网络延迟
if dic['count'] > 0:
dic['count'] -= 1
time.sleep(1) # 模拟读数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('%s购票成功!' % name)
def task(name):
search(name)
get(name)
if __name__ == '__main__':
for i in range(10): # 模拟并发10个客户端抢票
name = '路人%s' % i
p = Process(target=task,args=(name,))
p.start()
并发运行,效率高,但竞争同一个文件,数据写入错乱,只有一张票,卖成功给了10个人
<路人0> 查到剩余票数1
<路人1> 查到剩余票数1
<路人2> 查到剩余票数1
<路人3> 查到剩余票数1
<路人4> 查到剩余票数1
<路人5> 查到剩余票数1
<路人6> 查到剩余票数1
<路人7> 查到剩余票数1
<路人8> 查到剩余票数1
<路人9> 查到剩余票数1
<路人0> 购票成功
<路人4> 购票成功
<路人1> 购票成功
<路人5> 购票成功
<路人3> 购票成功
<路人7> 购票成功
<路人2> 购票成功
<路人6> 购票成功
<路人8> 购票成功
<路人9> 购票成功
加锁处理:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全
# 文件db.txt的内容为:{“count”:1}
# 注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json
def search(name):
dic = json.load(open('db.txt'))
time.sleep(1)
print('%s 查到剩余票数 %s' % (name,dic['count']))
def get(name):
dic = json.load(open('db.txt'))
time.sleep(1) # 模拟读数据的网络延迟
if dic['count'] > 0:
dic['count'] -= 1
time.sleep(1) # 模拟读数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('%s购票成功!' % name)
def task(name,lock):
search(name)
with lock: # 相当于lock.acquire(),执行完自代码块自动执行lock.release()
get(name)
if __name__ == '__main__':
lock = Lock()
for i in range(10): # 模拟并发10个客户端抢票
name = '路人%s' % i
p = Process(target=task,args=(name,lock))
p.start()
执行结果:
<路人0> 查到剩余票数1
<路人1> 查到剩余票数1
<路人2> 查到剩余票数1
<路人3> 查到剩余票数1
<路人4> 查到剩余票数1
<路人5> 查到剩余票数1
<路人6> 查到剩余票数1
<路人7> 查到剩余票数1
<路人8> 查到剩余票数1
<路人9> 查到剩余票数1
<路人0> 购票成功
三、互斥锁与join
使用join也可以将并发变成串行,互斥锁的原理也是将并发改成串行。那我们直接使用join就可以了啊,为何还要使用互斥锁呢? 那我们用join来试一下!
把文件db.txt的内容重置为:{“count”:1}
from multiprocessing import Process,Lock
import time,json
def search(name):
dic = json.load(open('db.txt'))
time.sleep(1)
print('%s 查到剩余票数 %s' % (name,dic['count']))
def get(name):
dic = json.load(open('db.txt'))
time.sleep(1) # 模拟读数据的网络延迟
if dic['count'] > 0:
dic['count'] -= 1
time.sleep(1) # 模拟读数据的网络延迟
json.dump(dic,open('db.txt','w'))
print('%s购票成功!' % name)
def task(name):
search(name)
get(name)
if __name__ == '__main__':
lock = Lock()
for i in range(10): # 模拟并发10个客户端抢票
name = '路人%s' % i
p = Process(target=task,args=(name,))
p.start()
p.join()
执行结果:
<路人0> 查到剩余票数1
<路人0> 购票成功
<路人1> 查到剩余票数0
<路人2> 查到剩余票数0
<路人3> 查到剩余票数0
<路人4> 查到剩余票数0
<路人5> 查到剩余票数0
<路人6> 查到剩余票数0
<路人7> 查到剩余票数0
<路人8> 查到剩余票数0
<路人9> 查到剩余票数0
发现使用join将并发改成串行,确实能保证数据安全,但问题是连查票操作也变成只能一个一个去查了,很明显大家查票时应该是并发的去查血而无需考虑数据准确与否。此时join与互斥锁的区别就显而易见了,join是将一个任务整体串行,而互斥锁的好处则是可以将一个任务中的某一段代码串行,比如让task函数中的get任务串行
def task(name):
search(name) # 并发执行
lock.acquire()
get(name) # 串行执行
lock.release()
四、总结
加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改。速度虽然慢了,但是保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
- 效率低(共享数据基于文件,而文件是硬盘上的数据)
- 需要自己加锁处理
因此我们最好找寻一种解决方案能够兼顾:
- 效率高(多个进程共享一块内存的数据)
- 帮我们处理好锁的问题
这就是multiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放与内存中,而队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,因而队列才是进程间通信的最佳选择。
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁的问题,而且在进程数目增多时,往往可以获得更好的可扩展性。