领悟《信号与系统》之 傅立叶变换的性质与应用

本文深入解析傅里叶变换的基本性质,包括线性、尺度、时移、频移等,并展示了它们在信号处理中的重要作用,如卷积定理、对称性和帕塞瓦尔定理,以及实际中的调制和频谱搬移示例。


依据傅里叶变换对概念,一个非周期连续时间信号可以表述为指数函数的积分。根据这个积分的性质可以联系起时域和频域的关系。推导出一些非常好用的公式,以简化运算。

一、傅里叶变换性质表

在这里插入图片描述

二、傅里叶性质详细

  • 傅里叶变换式:
    在这里插入图片描述
    该变换式建立起了信号时域与频域间的联系,因而,一个信号可以有两种描述,而且形式可以相互转换,这里主要记录一下信号在时域中进行运算或变化时,在频域引起的效应。

1. 线性性质

用这个就能复合信号分解,然后分别求单独的傅里叶变换,最后再合并,主要就是分解来分步骤解决问题。和LTI 的线性齐次变换一致的。

  • 定义:
    在这里插入图片描述

例题:
在这里插入图片描述

2. 尺度变换特性

尺度变换特性说明,连续时间信号在时域展宽(0 < a < 1),对应其频谱信号在频域压缩;时域压缩(a >1),对应频域展宽;如果a < 0 ,则时域波形反转并压缩或展宽。这一特性说明了时间和频率之间的反比关系,通常称为时频展缩
(F = 1 / T) 所以成反比哈
该性质在信号处理系统设计时,常常是一重要的衡量因素。例如,希望提高系统的传输效率时,需要对待传输的信号进行压缩,但压缩后的信号则需要设计频带更宽的传输系统。

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

例题:
在这里插入图片描述

3. 时移特性

这一性质说明,当信号在时间域有移位(表示信号的接入时间有变化),其幅度频谱不变,相位频谱将增加一个附加相移 ±ωt0,并且与ω 成线性关系。

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

例题:
在这里插入图片描述

4. 频移特性

这个用的非常多,他能频谱搬移,用的非常多。

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

例题:
在这里插入图片描述
频移特性在各类电子系统中应用广泛,如调幅、同步解调等都是在频谱搬移基础上实现的,实现频谱搬移的原理如下图所示。它将信号 f(t) (常称为调制信号)在时域上乘以载波信号 cos(ω0t) 或 sin(ω0t) ,从而得到高频已调信号 y(t) ,即

  • y(t) = f(t) · cos(ω0t)
    在这里插入图片描述
    下面举出门函数及高频脉冲信号的时域波形及其频谱例子
    在这里插入图片描述

可见,当用某低频信号 f (t) 去调制角频率为 ω0 的正弦信号的振幅时,高频已调信号的频谱是将 f (t) 的频谱 F(jω) 按比例复制为二,分别向左和向右搬移 ω0 ,在搬移的过程中,幅度频谱的形式未改变。上述频率搬移的过程,在电子技术中就是调幅的过程。

5. 时域微分特性

时域的微分运算用频域中的乘法运算代替,这样就简化运算了

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

例题:
在这里插入图片描述

6. 频域微分特性

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

7. 时域积分特性

  • 定义:
    在这里插入图片描述

例题:

在这里插入图片描述
在这里插入图片描述

8. 频域积分特性

  • 定义:
    在这里插入图片描述

例题:
在这里插入图片描述

9. 卷积定理

1. 时域卷积定理

两个时域内相卷积信号的傅里叶变换为其分别求频谱的乘积。通过这一性质,我们可以将时域的卷积运算映射到频域进行。

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

2. 频域卷积定理

一个信号乘以另一个信号,可以理解为用一个信号去调制另一个信号的振幅,因此,频域卷积定理有些书上也称为(幅度)调制定理

  • 定义:
    在这里插入图片描述

例题:
在这里插入图片描述

例题:
在这里插入图片描述

10. 对称性

该性质说明,时间变量和频率变量交换后,都有一种对称关系(也称对偶关系)存在。利用这一性质,可以比较方便地分析某些信号的傅里叶正变换和傅里叶反变换。

  • 定义:
    在这里插入图片描述
    证明:
    在这里插入图片描述

例题:
在这里插入图片描述

11. 帕塞瓦尔定理

  • 定义:
    在这里插入图片描述
    一般来说,非周期信号不是功率信号,其平均功率为零,但其能量为有限值,故是一个能量信号,其总能量W 为
    在这里插入图片描述
    非周期信号的帕塞瓦尔定理表明:对于非周期信号而言,在时域中求得的信号能量与在频域中求得的信号能量相等。由于|F(jw)|2 是 w 的偶函数, 也可以写做:
    在这里插入图片描述
### 傅里叶变换的数学性质 傅里叶变换是一种重要的工具,广泛应用信号处理、通信工程以及图像处理等领域。其核心在于将时间域中的信号转换到频率域中进行分析。 #### 1. 线性性质 如果 \( f_1(t) \) 和 \( f_2(t) \) 的傅里叶变换分别为 \( F_1(\omega) \) 和 \( F_2(\omega) \),那么对于任意常数 \( a \) 和 \( b \),有 \[ \mathcal{F}[a f_1(t) + b f_2(t)] = a F_1(\omega) + b F_2(\omega) \] 这一线性特性使得傅里叶变换能够很好地分解复杂信号为简单成分[^1]。 #### 2. 平移性质 假设 \( f(t) \) 的傅里叶变换为 \( F(\omega) \),则平移后的信号 \( f(t-t_0) \) 对应于频域相位的变化: \[ \mathcal{F}[f(t-t_0)] = e^{-j\omega t_0} F(\omega) \] 同样,在频域上的平移也会引起时域内的变化: \[ \mathcal{F}[e^{j\omega_0 t} f(t)] = F(\omega-\omega_0) \] #### 3. 尺度变换性质信号的时间尺度发生变化时,对应的频谱会反向缩放并伴随幅度调整。具体来说,若 \( g(t) = f(at) \),其中 \( a > 0 \),则 \[ \mathcal{F}[g(t)] = \frac{1}{|a|} F\left( \frac{\omega}{a} \right) \] #### 4. 微分积分性质 微分操作对应于频域内引入因子 \( j\omega \),即 \[ \mathcal{F}\left[\frac{d^n f(t)}{dt^n}\right] = (j\omega)^n F(\omega) \] 而对于积分运算,则可以通过对象函数的形式达出来: \[ \mathcal{F}\left[\int_{-\infty}^t f(\tau)d\tau\right] = \frac{1}{j\omega} F(\omega), (\text{if } F(0)=0) \][^2] #### 5. 卷积定理 两个函数卷积傅里叶变换等于它们各自傅里叶变换的乘积: \[ \mathcal{F}[f_1(t)*f_2(t)] = F_1(\omega)F_2(\omega) \] 反之亦然,两者的乘积经过逆傅里叶变换可得到原函数的卷积关系。 --- ### 应用领域 #### 图像处理 在图像处理方面,通过离散傅里叶变换(DFT),可以高效提取图像的空间频率特征,并利用这些信息完成滤波、压缩等任务。例如 JPEG 编码就采用了类似的原理来减少冗余数据量[^4]。 #### 高效计算方法——快速傅里叶变换(FFT) 为了克服传统 DFT 计算过程中存在的高复杂度问题,提出了基于矩阵乘法优化策略的 FFT 技术。这种方法极大地提升了大规模数据分析场景下的性能现,成为现代科学计算不可或缺的一部分[^3]。 ```python import numpy as np from scipy.fftpack import fft # Example of applying Fast Fourier Transform on a simple signal N = 600 # Number of sample points T = 1.0 / 800.0 # Sample spacing x = np.linspace(0.0, N*T, N, endpoint=False) y = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x) yf = fft(y) xf = np.linspace(0.0, 1.0/(2.0*T), N//2) import matplotlib.pyplot as plt plt.plot(xf, 2.0/N * np.abs(yf[:N//2])) plt.grid() plt.show() ``` 上述代码展示了如何使用 Python 实现基本的 FFT 运算过程,并绘制出相应频谱图。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太阳风暴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值