信号与系统(13)- 傅里叶变换的性质

了解傅里叶变换的性质,对于求解信号的傅里叶变换会有帮助,但是通常来说,可以通过使用EDA工具,如MATLAB等进行仿真求得。这里仅做总结。

傅里叶变换的性质:

如果存在信号 f ( t ) f(t) f(t),则其傅里叶变换记为 F ( j ω ) F(j\omega) F(jω)

  1. 线性特性:

    • 信号和的傅里叶变换等于信号的傅里叶变换的和
    • a ⋅ f 1 ( t ) + b ⋅ f 2 ( t ) ⟷ a ⋅ F 1 ( j ω ) + b ⋅ F 2 ( j ω ) a\cdot f_1(t) +b\cdot f_2(t) \longleftrightarrow a\cdot F_1(j\omega)+b\cdot F_2(j\omega) af1(t)+bf2(t)aF1(jω)+bF2(jω)
  2. 延时特性:

    • 信号 f ( t ) f(t) f(t)时域上延时 f ( t − t 0 ) f(t-t_0) f(tt0),对应到频域是在原信号 f ( t ) f(t) f(t)傅里叶变换 F ( j ω ) F(j\omega) F(jω)上乘以 e j ω t 0 e^{j\omega t_0} ejωt0
    • f ( t − t 0 ) ⟷ F ( j ω ) e − j ω t 0 f(t-t_0)\longleftrightarrow F(j\omega)e^{-j\omega t_0} f(tt0)F(jω)ejωt0
  3. 移频特性:

    • 这是一个与延时特性对偶的性质,即如果在时域上将信号乘以 e j ω c t e^{j\omega_c t} ejωct,则对应的频域将延迟 ω c \omega_c ωc
    • f ( t ) e j ω c t ⟷ F [ j ( ω − ω c ) ] f(t)e^{j\omega_c t} \longleftrightarrow F[j(\omega-\omega_c)] f(t)ejωctF[j(ωωc)]
    • 这个性质有一个推论:即AM波调制: f ( t ) c o s ( ω c t ) ⟷ 1 2 { F [ j ( ω + ω c ) ] + F [ j ( ω − ω c ] } f(t)cos(\omega_c t) \longleftrightarrow \frac{1}{2}\{F[j(\omega +\omega_c)]+F[j(\omega -\omega_c]\} f(t)cos(ωct)21{F[j(ω+ωc)]+F[j(ωωc]}
  4. 尺度变换:

    • 信号的宽度 τ \tau τ在时间上压缩a倍,信号的频率宽度B将在频率上扩展a倍。
    • f ( a t ) ⟷ 1 ∣ a ∣ F ( j ω a ) f(at) \longleftrightarrow \frac{1}{\vert{a}\vert} F(j\frac{\omega}{a}) f(at)a1F(jaω)
  5. 奇偶特性:

    如果 f ( t ) f(t) f(t)是实数信号:

    • F ( j ω ) = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F(j\omega) = \int_{-\infty}^{+\infty}f(t)e^{-j\omega t}dt F(jω)=+f(t)ejωtdt

      = ∫ − ∞ + ∞ f ( t ) c o s ( ω t ) d t − j ∫ − ∞ + ∞ f ( t ) s i n ω t ) d t = \int_{-\infty}^{+\infty}f(t)cos(\omega t)dt - j\int_{-\infty}^{+\infty}f(t)sin\omega t)dt =+f(t)cos(ωt)dtj+f(t)sinωt)dt

      = R ( ω ) − j X ( ω ) = ∣ F ( j ω ) ∣ e j φ ( ω ) = R(\omega) - jX(\omega)=\vert F(j\omega) \vert e^{j\varphi (\omega)} =R(ω)jX(ω)=F(jω)ejφ(ω)

    • R ( ω ) = ∫ − ∞ + ∞ f ( t ) c o s ( ω t ) d t R(\omega) = \int_{-\infty}^{+\infty}f(t)cos(\omega t)dt R(ω)=+f(t)cos(ωt)dt,是 F ( j ω ) F(j\omega) F(jω)的实部, $X(\omega)=\int_{-\infty}^{+\infty}f(t)sin(\omega t)dt , 是 ,是 F(j\omega$的虚部。

    • ∣ F ( j ω ) ∣ \vert F(j\omega) \vert F(jω) F ( j ω ) F(j\omega) F(jω)的幅度

    • φ ( ω ) = a r c t a n ( X ( ω ) R ( ω ) ) \varphi(\omega) = arctan(\frac{X(\omega)}{R(\omega)}) φ(ω)=arctan(R(ω)X(ω)),是 F ( j ω ) F(j\omega) F(jω)的相角

    • 实部是 ω \omega ω的偶函数,虚部是 ω \omega ω的奇函数

    • 幅度 ∣ F ( j ω ) ∣ \vert F(j\omega) \vert F(jω) ω \omega ω的偶函数, φ ( ω ) = a r c t a n ( X ( ω ) R ( ω ) ) \varphi(\omega) = arctan(\frac{X(\omega)}{R(\omega)}) φ(ω)=arctan(R(ω)X(ω)) ω \omega ω的奇函数

    • f ( − t ) ⟷ F ( − j ω ) f(-t) \longleftrightarrow F(-j\omega) f(t)F(jω) f ∗ ( t ) ⟷ F ∗ ( − j ω ) f^*(t) \longleftrightarrow F^*(-j\omega) f(t)F(jω) f ∗ ( − t ) ⟷ F ∗ ( j ω ) f^*(-t) \longleftrightarrow F^*(j\omega) f(t)F(jω)

  6. 对称特性:

    • 如果 f ( t ) ⟷ F ( j ω ) f(t) \longleftrightarrow F(j\omega) f(t)F(jω),则 F ( j t ) ⟷ 2 π f ( − ω ) F(jt) \longleftrightarrow 2\pi f(-\omega) F(jt)2πf(ω)
  7. 微分特性:

    • 如果 d d t f ( t ) \frac{d}{dt}f(t) dtdf(t)满足Direchlet条件,则: d d t d t ⟷ j ω F ( j ω ) \frac{d}{dt}dt \longleftrightarrow j\omega F(j\omega) dtddtjωF(jω)
    • d n d t n f ( t ) ⟷ ( j ω ) n F ( j ω ) \frac{d^n}{dt^n}f(t) \longleftrightarrow (j\omega)^nF(j\omega) dtndnf(t)(jω)nF(jω)
  8. 积分特性:

    • ∫ − ∞ t f ( τ ) d τ ⟷ π F ( 0 ) δ ( ω ) + 1 j ω F ( j ω ) \int_{-\infty}^{t}f(\tau)d\tau \longleftrightarrow \pi F(0)\delta(\omega) + \frac{1}{j\omega}F(j\omega) tf(τ)dτπF(0)δ(ω)+jω1F(jω)
  9. 频域的微积分:

    • − j t ⋅ f ( t ) ⟷ d d ω F ( j ω ) -jt\cdot f(t) \longleftrightarrow \frac{d}{d\omega}F(j\omega) jtf(t)dωdF(jω)
    • π f ( 0 ) δ ( t ) + j f ( t ) t f ( t ) ⟷ ∫ − ∞ ω F ( j Ω ) d Ω \pi f(0) \delta(t) +j\frac{f(t)}{t}f(t) \longleftrightarrow \int_{-\infty}^{\omega}F(j\Omega)d\Omega πf(0)δ(t)+jtf(t)f(t)ωF(jΩ)dΩ
    • π δ ( t ) + j 1 t f ( t ) ⟷ ∫ − ∞ ω F ( j Ω ) d Ω \pi \delta(t)+ j\frac{1}{t}f(t) \longleftrightarrow \int_{-\infty}^{\omega}F(j\Omega)d\Omega πδ(t)+jt1f(t)ωF(jΩ)dΩ
    • ( − j t ) n f ( t ) ⟷ d n d ω n F ( j ω ) (-jt)^nf(t) \longleftrightarrow \frac{d^n}{d\omega^n}F(j\omega) (jt)nf(t)dωndnF(jω)
  10. 卷积定理:

    • 时域的卷积等于频域的乘积,时域的乘积等于频域的卷积
    • f 1 ( t ) ∗ f 2 ( t ) ⟷ F 1 ( j ω ) ⋅ F 2 ( j ω ) f_1(t) * f_2(t) \longleftrightarrow F_1(j\omega) \cdot F_2(j\omega) f1(t)f2(t)F1(jω)F2(jω)
    • f 1 ( t ) ⋅ f 2 ( t ) ⟷ 1 2 π F 1 ( j ω ) ∗ F 2 ( j ω ) f_1(t)\cdot f_2(t) \longleftrightarrow \frac{1}{2\pi} F_1(j\omega)*F_2(j\omega) f1(t)f2(t)2π1F1(jω)F2(jω)
  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值