数字信号复习题纲

数字信号复习题纲

本参考复习题纲只适用于 CUIT 电子信息专业 张钟浩 老师 的数字信号处理理论及算法

一、希尔伯特变换器(✔️ )

1. 什么是希尔伯特变换器?

在这里插入图片描述

2. 试证明信号通过希尔伯特变换器后的输出

在这里插入图片描述
例题:
在这里插入图片描述

其实要点就是把 sin cos 函数的频谱 也就是傅里叶变换,再分 w>0 和 w<0 部分和 H(jw) 相乘 再化成时域函数就好啦。
在这里插入图片描述


二、能量信号的自相关函数、卷积运算与能量谱(✔️)

1. 能量信号(科普的)

  • 能量信号
    定义信号能量等于一个有限正值,但平均功率为零。
    特征信号的振幅和持续时问均有限,非周期性
    实例单个矩形脉冲
    在这里插入图片描述

  • 自相关函数
    在这里插入图片描述

  • 卷积运算
    在这里插入图片描述

  • 能量谱
    在这里插入图片描述

结论
能量信号在 零时刻的自相关函数 就等于 信号的能量;
自相关函数是偶函数;
能量信号的 自相关函数信号能量谱密度傅里叶变换对

2. 试证明自相关函数运算与卷积运算的关系(背就好)

在这里插入图片描述

3. 试证明自相关函数的傅里叶变换是能量谱,即信号幅度谱的平方(背就好)

在这里插入图片描述


三、FIR 滤波器(✔️)

1. 相关概念

  1. FIR 滤波器的冲激响应 一定是有限长的,如 h(n) = {1,2,3},其他位置为 0

  2. 显然 FIR 滤波器一定是稳定系统 (h(n) 累加和是绝对可和的)

  3. FIR 为全0点系统

  4. 若要求 FIR 滤波器是线性相位 FIR 滤波器,那么 必须满足对称性
    在这里插入图片描述

  5. 会画线性相位 FIR 滤波器的直接结构 和高效结构 h(n) = {1,2,3,2,1}
    在这里插入图片描述

  6. 扩展画图
    像下面几个序列需要对应的结构图
    h(n)={1,2,3,2,1} ----》 使用第一类 b N 为奇数
    h(n)={1,2,3,3,2,1} ----》 使用第一类 a N 为偶数
    h(n)=(1,2,0,-2,-1} ----》 使用第二类 b N 为奇数
    h(n)={1,2,-3,3,-2,-1} ----》 使用第二类 a N 为偶数

2. 重要结论

  1. 如果 z0 是线性相位FIR滤波器的零点,那么 Z*,1 / Z0,1/Z0* 都是线性相位FIR滤波器的零点。
  2. 当线性相位FIR滤波器的零点个数为单数时,如果滤波器是高通滤波器,那么在 z=±1处存在零点;如果滤波器是低通滤波器,那么在 z =-1 处存在零点。

四、DFT 与 FFT(✔️)

0. 循环卷积

在这里插入图片描述

0.5 蝶形运算单元公式

每一个蝶形公式就是只管输入,计算输出,注意箭头方向

  • (DIT 蝶形)
    在这里插入图片描述
  • (DIF 蝶形)
    在这里插入图片描述

1. 画 4 点基 2-DIT(时域抽取)-FFT 和基 2-DIF(频域抽取)-FFT 流图

公共运算:
在这里插入图片描述

1. 4点 DIT-FFT

在这里插入图片描述

2. 4点 DIF-FFT

在这里插入图片描述

2. 画 8 点基 2-DIT(时域抽取)-FFT 和基 2-DIF(频域抽取)-FFT 流图

公共运算(只需要4个):

在这里插入图片描述

1. 8点DIT-FFT

在这里插入图片描述

2. 8点DIF-FFT

在这里插入图片描述

3. 会手算有限长序列的 DFT

就是带公式(带进去计算就好)
在这里插入图片描述


五、z 逆变换(✔️ )

0. z变换的基本性质和常用变换对

在这里插入图片描述

在这里插入图片描述

1. 求z逆变换

在这里插入图片描述

  • 理论(大概率只考单极点):
    在这里插入图片描述
    例题:
    在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

2. 根据 H(z) 表达式写出零极点、收敛域

零点:分子取0时, z 的取值
极点:分母取0时, z 的取值
在这里插入图片描述

3. 会判断在何收敛域情况下, 是因果的/非因果的,以及稳定的/不稳定的

因果性 可以 由收敛域得到 就是上面的情况

  • 一个因果的 LSI 系统稳定的充要条件是其所有的极点必须都位于单位圆内
  • 一个 LSI 系统是稳定的充要条件是其收敛域包含单位圆。

通用 判定稳定性(了解即可)
在这里插入图片描述

4. 系统响应求解

在这里插入图片描述


六、用 DFT 估计频谱(✔️ )

  1. 仅仅通过补零,能否改善频谱估计的物理分辨率?
  • 不能
  1. 仅仅通过补零,能减少 栅栏 效应,改善频谱估计的 (计算)频率 分辨率。

七、低通数字滤波器设计

1.设计步骤

在这里插入图片描述

2. 注意点

角频率 ω与频率f之间的关系为:ω = 2πf

在这里插入图片描述

3. 计算流程

在这里插入图片描述

1. 巴特沃斯求Hs(s)

这里要注意一下这个 λsp 的取值,如果采用了对应的 脉冲响应不变法、双线性变换法的话就要 变一下

λsp = Ωs / Ωp

在这里插入图片描述

在这里插入图片描述


在这里插入图片描述

2. 使用 脉冲响应法求 H(z)

![在这里插入图片描述](https://img-blog.csdnimg.cn/1a3e2858c0bc47b79bc0f42d78246b57.pn

在这里插入图片描述

3. 使用双线性变换法

在这里插入图片描述

在这里插入图片描述

八、序列抽取与插值(✔️ )

1. 如何用数学表达式和框图表示 L 倍抽取?

在这里插入图片描述

实际应用中,为了避免频域混叠,在抽取前需要添加低通滤波器。

在这里插入图片描述
在这里插入图片描述


九、随机信号的基本概念(✔️ )

1. 平稳性与各态历经性

在这里插入图片描述
转的话就用欧拉公式就可以啦

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

2. 方差、互协方差、均方值、自相关函数和功率谱之间的关系是什么?

在这里插入图片描述

3. 白噪声自相关函数为冲激函数,功率谱为常数。


十、自相关函数的直接估计法(✔️ )

重点复习此方法的偏差性能分析:教材 13.1.1 节中第 1 小节“1.偏差”的第508 页部分,公式+结论要点。
在这里插入图片描述


十一、K-L 变换(✔️ )

1. 零均值宽平稳实随机向量 的协方差矩阵 的非对角元绝对值越大,说明各元素之间的相关性越_强_?(强/弱)

在这里插入图片描述

2. K-L 变换 y=Ax 的目的是什么?教材 P327 关于 K-L 变换优点的讨论 ①。

K-L变换是Karhunen-Loeve变换的简称,这是一种特殊的正交变换,主要用于一维和二维信号的数据压缩

  • 举例:对给定的信号x(n),若它是正弦信号,那么不管它有多长,我们仅需三个参数,即幅度、频率和相位,便可完全确定它。当我们需要对x(n)进行传输或存储时,仅需传输或存储这三个参数。在接收端,由于这三个参数可完全无误差地恢复出原信号,因此达到了数据最大限度的压缩。对大量的非正弦信号,如果它的各个分量之间完全不相关,那么表示该数据中没有沉余,需要全部传输或存储;若x(n)中有相关成分,通过去除其相关性则可达到数据压缩的目的

优点:
在这里插入图片描述

3. K-L 变换后 y 的协方差阵Cy 与 Cx 的关系?教材 P326 公式(8.2.2)前半部分

在这里插入图片描述

4. 其他

在这里插入图片描述

  • 协方差矩阵各非对角元素为0的含义?
    这表示不同变量之间不存在线性相关性,即它们是相互独立的。

  • 协方差矩阵各个对角元素的含义是什么?对角元的值越大说明什么?
    协方差矩阵的对角元素表示各个随机变量的方差,对角元素的值越大表示该随机变量的取值波动越大,即方差越大


十二、ARMA、AR、MA 模型以及参数谱估计(✔️ )

在这里插入图片描述

1、三种模型的含义。在什么情况下,ARMA模型变为AR模型?在什么情况下,ARMA模型变为MA模型?

在这里插入图片描述

2、三种模型的功率谱表达式。在参数谱估计方法中,哪些是待估计参数?

在这里插入图片描述

3、Levinson-Durbin 递推算法步骤

在这里插入图片描述

例题:

在这里插入图片描述

期末大作业基于python的足球运动员数据分析源码+数据集(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于python的足球运动员数据分析源码+数据集(高分项目)期末大作业基于pyth
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太阳风暴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值