题意:有n个聚会,每个聚会都会规定穿什么衣服,你可以将衣服套着穿,但是衣服脱下来就不能再穿了,除非再买一件,求至少需要多少件衣服。
题解:区间dp
用
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]表示第
i
i
i天到第
j
j
j天最少需要多少件衣服,逆着区间dp。
我们先假设第
i
i
i天和第
i
+
1
i+1
i+1天衣服不同(即使相同后面取min也会忽略),那么可以得到转移方程:
dp[i][j] = dp[i + 1][j] + 1
,即先穿上再说。
然后遍历第
i
+
1
i+1
i+1天到第
j
j
j天是否有那一天衣服与第
i
i
i天相同,那么可以得到转移方程:
dp[i][j] = min(dp[i][j], dp[i + 1][k] + dp[k + 1][j])
,比较 穿上 和 脱去前面覆盖的露出第
i
i
i天的衣服 两种情况。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
using namespace std;
int t, n, a[111], dp[111][111];
int main() {
scanf("%d", &t);
int cas = 0;
while (t--) {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
memset(dp, 0, sizeof(dp));
for (int i = n; i >= 1; i--) {
for (int j = i; j <= n; j++) {
dp[i][j] = dp[i + 1][j] + 1;
for (int k = i + 1; k <= j; k++) {
if(a[i] == a[k]) dp[i][j] = min(dp[i][j], dp[i + 1][k] + dp[k + 1][j]);
}
}
}
printf("Case %d: %d\n", ++cas, dp[1][n]);
}
return 0;
}