题意:n个人按顺序1-n排队,可并列排,给出x对关系,两两距离不超过D;给出y对关系,两两距离不小于D,求1到n的最远距离。
题解:差分约束
求最远,跑spfa最短路。
按题意建立差分约束方程即可。
由于并列排,所以相邻两人距离限制条件是≤0。
注意inf输出-2。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
#define pii pair<int, int>
using namespace std;
const int maxn = 1e3 + 5;
const int maxm = 3e4 + 5;
int t, n, x, y, a, b, D;
struct node {
int v, nxt, w;
}edge[maxm];
int vis[maxn], d[maxn], head[maxn], mark[maxn], k, s;
void add(int u, int v, int w) {
edge[++k].nxt = head[u];
edge[k].v = v;
edge[k].w = w;
head[u] = k;
}
bool spfa() {
for (int i = 1; i <= n; i++) {
vis[i] = mark[i] = 0;
d[i] = 0x3f3f3f3f;
}
queue<int>q;
q.push(s);
mark[s] = vis[s] = 1;
d[s] = 0;
while (!q.empty()) {
int u = q.front(); q.pop();
vis[u] = 0;
for (int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if (d[v] > d[u] + w) {
d[v] = d[u] + w;
if (vis[v]) continue;
vis[v] = 1;
if(++mark[v] > n) return false; //负环 n+1以上才有负环
q.push(v);
}
}
}
return true;
}
int main() {
scanf("%d", &t);
while (t--) {
k = 0;
memset(head, 0, sizeof(head));
scanf("%d%d%d", &n, &x, &y);
for (int i = 2; i <= n; i++) add(i, i - 1, 0);
for (int i = 1; i <= x; i++) {
scanf("%d%d%d", &a, &b, &D);
add(a, b, D);
}
for (int i = 1; i <= y; i++) {
scanf("%d%d%d", &a, &b, &D);
add(b, a, -D);
}
s = 1;
if (spfa()) {
printf("%d\n", d[n] == 0x3f3f3f3f ? -2 : d[n]);
}
else puts("-1");
}
return 0;
}