HDU 3592 World Exhibition (差分约束)

题意:n个人按顺序1-n排队,可并列排,给出x对关系,两两距离不超过D;给出y对关系,两两距离不小于D,求1到n的最远距离。

题解:差分约束
求最远,跑spfa最短路。

按题意建立差分约束方程即可。
由于并列排,所以相邻两人距离限制条件是≤0。

注意inf输出-2。

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
#define pii pair<int, int>
using namespace std;
const int maxn = 1e3 + 5;
const int maxm = 3e4 + 5;
int t, n, x, y, a, b, D;
struct node {
    int v, nxt, w;
}edge[maxm];
int vis[maxn], d[maxn], head[maxn], mark[maxn], k, s;
void add(int u, int v, int w) {
    edge[++k].nxt = head[u];
    edge[k].v = v;
    edge[k].w = w;
    head[u] = k;
}
bool spfa() {
    for (int i = 1; i <= n; i++) {
        vis[i] = mark[i] = 0;
        d[i] = 0x3f3f3f3f;
    }
    queue<int>q;
    q.push(s);
    mark[s] = vis[s] = 1;
    d[s] = 0;
    while (!q.empty()) {
        int u = q.front(); q.pop();
        vis[u] = 0;
        for (int i = head[u]; i; i = edge[i].nxt) {
            int v = edge[i].v, w = edge[i].w;
            if (d[v] > d[u] + w) {
                d[v] = d[u] + w;
                if (vis[v]) continue;
                vis[v] = 1;
                if(++mark[v] > n) return false;  //负环 n+1以上才有负环
                q.push(v);
            }
        }
    }
    return true;
}
int main() {
	scanf("%d", &t);
	while (t--) {
        k = 0;
        memset(head, 0, sizeof(head));
		scanf("%d%d%d", &n, &x, &y);
        for (int i = 2; i <= n; i++) add(i, i - 1, 0);
		for (int i = 1; i <= x; i++) {
			scanf("%d%d%d", &a, &b, &D);
            add(a, b, D);
		}
        for (int i = 1; i <= y; i++) {
            scanf("%d%d%d", &a, &b, &D);
            add(b, a, -D);
        }
        s = 1;
        if (spfa()) {
            printf("%d\n", d[n] == 0x3f3f3f3f ? -2 : d[n]);
        }
        else puts("-1");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值