HDU 1530 Maximum Clique (最大团)

题意:给出无向图,求最大团的结点数。

题解:最大团
团:若图是一个团,则该图是无向图。
极大团:不是其他团的子集。
最大团:结点数最多的极大团。

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
#define pii pair<int, int>
using namespace std;
/*
最大团 = 补图G的最大独立集数
———>最大独立集数 = 补图G'最大团
*/
//最大团模板
#define N 102
int mx;//最大团数(要初始化为0)
int x[N], tuan[N];
int can[N][N];//can[i]表示在已经确定了经选定的i个点必须在最大团内的前提下还有可能被加进最大团的结点集合
int num[N];//num[i]表示由结点i到结点n构成的最大团的结点数
bool g[N][N];//邻接矩阵(从1开始)
int n;
bool dfs(int tot, int cnt) {
	int i, j, k;
	if (tot == 0) {
		if (cnt > mx) {
			mx = cnt;
			for (i = 0; i < mx; i++) {
				tuan[i] = x[i];
			}
			return true;
		}
		return false;
	}
	for (i = 0; i < tot; i++) {
		if (cnt + (tot - i) <= mx)return false;
		if (cnt + num[can[cnt][i]] <= mx)return false;
		k = 0;
		x[cnt] = can[cnt][i];
		for (j = i + 1; j < tot; j++) {
			if (g[can[cnt][i]][can[cnt][j]]) {
				can[cnt + 1][k++] = can[cnt][j];
			}
		}
		if (dfs(k, cnt + 1))return false;
	}
	return false;
}
void MaxTuan() {
	int i, j, k;
	mx = 1;
	for (i = n; i >= 1; i--) {
		k = 0;
		x[0] = i;
		for (j = i + 1; j <= n; j++) {
			if (g[i][j]) {
				can[1][k++] = j;
			}
		}
		dfs(k, 1);
		num[i] = mx;
	}
}
int main() {
	while (scanf("%d", &n) && n) {
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= n; j++) {
				scanf("%d", &g[i][j]);
			}
		}
		mx = 0;
		MaxTuan();
		printf("%d\n", num[1]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值