题意:给出无向图,求最大团的结点数。
题解:最大团
团:若图是一个团,则该图是无向图。
极大团:不是其他团的子集。
最大团:结点数最多的极大团。
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<fstream>
#include<set>
#include<map>
#include<sstream>
#include<iomanip>
#define ll long long
#define pii pair<int, int>
using namespace std;
/*
最大团 = 补图G的最大独立集数
———>最大独立集数 = 补图G'最大团
*/
//最大团模板
#define N 102
int mx;//最大团数(要初始化为0)
int x[N], tuan[N];
int can[N][N];//can[i]表示在已经确定了经选定的i个点必须在最大团内的前提下还有可能被加进最大团的结点集合
int num[N];//num[i]表示由结点i到结点n构成的最大团的结点数
bool g[N][N];//邻接矩阵(从1开始)
int n;
bool dfs(int tot, int cnt) {
int i, j, k;
if (tot == 0) {
if (cnt > mx) {
mx = cnt;
for (i = 0; i < mx; i++) {
tuan[i] = x[i];
}
return true;
}
return false;
}
for (i = 0; i < tot; i++) {
if (cnt + (tot - i) <= mx)return false;
if (cnt + num[can[cnt][i]] <= mx)return false;
k = 0;
x[cnt] = can[cnt][i];
for (j = i + 1; j < tot; j++) {
if (g[can[cnt][i]][can[cnt][j]]) {
can[cnt + 1][k++] = can[cnt][j];
}
}
if (dfs(k, cnt + 1))return false;
}
return false;
}
void MaxTuan() {
int i, j, k;
mx = 1;
for (i = n; i >= 1; i--) {
k = 0;
x[0] = i;
for (j = i + 1; j <= n; j++) {
if (g[i][j]) {
can[1][k++] = j;
}
}
dfs(k, 1);
num[i] = mx;
}
}
int main() {
while (scanf("%d", &n) && n) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
scanf("%d", &g[i][j]);
}
}
mx = 0;
MaxTuan();
printf("%d\n", num[1]);
}
return 0;
}