论文阅读-CLIP(文本-图片多模态)Learning Transferable Visual Models From Natural Language Supervision

CLIP模型利用大规模的图文配对数据,通过自然语言监督信号训练,实现强大的零样本迁移能力。无需预先定义类别,模型在多个数据集上表现出优秀的泛化性能,尤其在物体识别上,与有监督的ResNet50效果相当。然而,对于抽象任务和特定领域任务,CLIP的性能有待提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Paper:Learning Transferable Visual Models From Natural Language Supervision

Code:https://github.com/OpenAI/CLIP

引言:利用自然语言的监督信号去训练一个迁移效果很好的视觉模型,文字+图片多模态。

  • 其中,标签可以更改,不仅限于imageNet中的一千个类,可以换为任意的单词,图片也可以为任意的图片。

  • 彻底摆脱了分类标签这个性质,不论训练还是推理都不需要有提前定义好的类别。

  • 不仅能识别新的物体,而是真的把视觉和文字的语义联系到了一起,学到的特征语义性极强,迁移效果也很好。

### 关于Contrastive Language-Image Pre-training (CLIP) 的论文下载与阅读 #### CLIP的核心概念 CLIP(Contrastive Language-Image Pre-training)是一种基于对比学习的多模态模型,其主要目标是通过大量的文本-图像对来训练一个能够理解视觉和语言之间关系的通用表示[^3]。该模型利用对比学习的优势,在预训练过程中无需精确预测某个特定的文本描述,而是专注于判断哪些文本更可能与给定的图像相关联[^5]。 #### 论文获取途径 CLIP的相关研究由OpenAI团队完成,原始论文名为《Learning Transferable Visual Models From Natural Language Supervision》。可以通过以下几种方式进行下载: 1. **官方链接**: OpenAI通常会公开发布其研究成果,可以直接访问OpenAI官网并搜索“CLIP”或“Learning Transferable Visual Models From Natural Language Supervision”,找到PDF版本进行下载。 2. **学术资源平台**: 使用Google Scholar或其他学术搜索引擎输入关键词“Contrastive Language-Image Pre-training”或“CLIP paper”。这些平台上可能会提供免费的PDF下载选项。 3. **第三方存储库**: 如果无法直接从官方网站获得,则可以尝试在arXiv上查找是否有上传的版本。大多数机器学习领域的最新进展都会第一时间发布在此处。 #### 阅读建议 为了更好地理解和吸收CLIP的内容,推荐按照如下结构展开阅读: - **摘要部分**:快速了解整个工作的背景意义以及取得的主要成果。 - **方法论章节**:重点掌握如何构建损失函数实现对比学习机制;具体到正样本负样例的选择策略等方面[^4]。 - **实验分析**:注意作者是如何验证零样本迁移能力的有效性的,并且观察跨多种下游任务的表现情况。 以下是Python代码片段用于加载已发布的CLIP模型作为示例: ```python import clip import torch device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) image = preprocess(Image.open("example_image.jpg")).unsqueeze(0).to(device) text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() print(f"Label probs: {probs}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值