论文阅读-Combining EfficientNet and Vision Transformers for Video Deepfake Detection(深度鉴伪)

该论文提出了一种结合EfficientNet和Vision Transformers的方法,用于视频Deepfake检测。在DFDC数据集上取得了接近最佳检测水平的auc 0.951和f1 0.88。通过人脸检测器提取人脸,使用Efficient ViT和Convolutional Cross ViT网络,结合局部和全局信息进行真伪判断。实验表明,这种方法对于视频中多个不同人脸的检测具有较高的准确性。
摘要由CSDN通过智能技术生成

一、论文信息

论文名称:Combining EfficientNet and Vision Transformers for Video Deepfake Detection

论文代码:https://github.com/davide-coccomini/Combining-EfficientNet-and-Vision-Transformers-for-Video-Deepfake-Detection

会议:ICIAP2022

作者团队:

二、创新

传统基于CNN的方法在EfficientNetB7上效果很好,本文使用EfficientNet B0和ViT结合在DFDC数据集上取得了auc 0.951和f1 0.88的成绩,与DFDC数据集上最好的检测水平非常接近。将各种类型的视觉变换器与卷积EfficientNet B0相结合,提取人脸特征。不使用蒸馏法,也不使用集成法。而是一种基于简单投票的方案,用于处理同一视频镜头中的多个不同人脸。在时间上和跨多个人脸上 聚合推断出视频片段的真伪。

Deep person re-identification is the task of recognizing a person across different camera views in a surveillance system. It is a challenging problem due to variations in lighting, pose, and occlusion. To address this problem, researchers have proposed various deep learning models that can learn discriminative features for person re-identification. However, achieving state-of-the-art performance often requires carefully designed training strategies and model architectures. One approach to improving the performance of deep person re-identification is to use a "bag of tricks" consisting of various techniques that have been shown to be effective in other computer vision tasks. These techniques include data augmentation, label smoothing, mixup, warm-up learning rates, and more. By combining these techniques, researchers have been able to achieve significant improvements in re-identification accuracy. In addition to using a bag of tricks, it is also important to establish a strong baseline for deep person re-identification. A strong baseline provides a foundation for future research and enables fair comparisons between different methods. A typical baseline for re-identification consists of a deep convolutional neural network (CNN) trained on a large-scale dataset such as Market-1501 or DukeMTMC-reID. The baseline should also include appropriate data preprocessing, such as resizing and normalization, and evaluation metrics, such as mean average precision (mAP) and cumulative matching characteristic (CMC) curves. Overall, combining a bag of tricks with a strong baseline can lead to significant improvements in deep person re-identification performance. This can have important practical applications in surveillance systems, where accurate person recognition is essential for ensuring public safety.
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值