【CViT】Deepfake Video Detection Using Convolutional Vision Transformer

Deepfake Video Detection Using Convolutional Vision Transformer

会议/期刊:2021
作者:
在这里插入图片描述

key points

提出了一种用于检测深度伪造的卷积视觉变压器【CNN+VIT】

CNN提取可学习的特征,而ViT将学习到的特征作为输入,并使用注意机制对其进行分类。

我们的工作基于[10,11]指出的Deepfake检测方法的两个弱点:数据预处理和通用性。

我们提出了一种广义卷积视觉变压器(CViT)架构,使用卷积神经网络和变压器架构来检测Deepfake视频。

称我们的方法是一般化的,主要有三个原因。
1)我们提出的模型利用Transformer的注意力机制,利用CNN和Transformer架构学习局部和全局图像特征[6]。
2)我们在训练和分

### 安装 CViT 库 对于希望在 Python 中安装 CViT (Conditional Vision Transformer) 库的情况,通常会遇到一些依赖性和环境配置的问题。如果尝试通过 `pip` 安装时遇到了诸如 "bad interpreter: No such file or directory" 这样的错误[^1],这可能是由于 Python 解释器路径设置不当或者是 Conda 环境未正确激活所引起的。 为了成功安装 CViT 或任何其他特定于计算机视觉任务的库,建议按照以下方法操作: #### 方法一:使用 pip 安装 确保当前使用的命令行已经正确指定了 Python 解释器的位置,并且工作在一个干净的虚拟环境中。可以创建一个新的 Conda 环境来隔离项目所需的软件包版本。 ```bash conda create --name my_cvit_env python=3.8 conda activate my_cvit_env ``` 接着可以通过 PyPI 来查找是否有官方发布的 CViT 包。如果没有找到,则可能需要从 GitHub 上克隆源代码仓库并本地构建安装。 ```bash pip install git+https://github.com/your-repo/cvit.git@main ``` 请注意替换上面 URL 和分支名 (`main`) 为实际存在的地址。 #### 方法二:直接从GitHub或其他资源下载并安装 当无法通过 `pip` 获取最新版或特定功能版本的时候,可以直接访问开发者维护的 Git 存储库页面,依照 README 文件中的指示来进行编译和安装过程。 假设有一个名为 `cvit` 的项目托管在 GitHub 上,那么可以从那里拉取最新的源码并执行安装脚本: ```bash git clone https://github.com/someone/cvit.git cd cvit python setup.py install ``` 以上两种方式都可以解决因解释器问题而导致的安装失败情况。另外,在新服务器上重新建立开发环境之后,务必确认所有必要的依赖项都已经正确安装并且兼容现有的硬件条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值