论文阅读-可泛化深度伪造检测的关键

本文介绍了一种提升深度伪造检测泛化能力的方法,通过预训练和多任务微调阶段学习图像的内在一致性和多样性。利用Transformer进行自监督学习,提出可调伪造合成器(AFS)增强数据多样性,以应对不同伪造技术和处理方式带来的挑战。实验结果显示,该方法在多个数据集上表现出优秀的检测性能。
摘要由CSDN通过智能技术生成

一、论文信息

  1. 论文名称:Learning Features of Intra-Consistency and Inter-Diversity: Keys Toward Generalizable Deepfake Detection

  2. 作者团队:Chen H, Lin Y, Li B, et al. (广东省智能信息处理重点实验室、深圳市媒体安全重点实验室和深圳大学人工智能与数字经济广东实验室)

  3. 论文网址:https://ieeexplore.ieee.org/abstract/document/9903059

  4. 发表期刊:IEEE Transactions on Circuits and Systems for Video Technology

二、动机与创新

1、动机:

①大多数都存在不同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值