(研一新生读论文入门,简要记录)
论文名称:Faster R-CNN: T owards Real-Time Object
Detection with Region Proposal Networks
论文地址:https://arxiv.org/abs/1506.01497
发布期刊:Neural Information Processing Systems (NIPS)machine learning 顶级会议-2015
参考:https://zhuanlan.zhihu.com/p/32404424
内容:
背景介绍:Faster R-CNN主要用于目标检测,还被应用到更多的领域中, 比如人体关键点检测、目标追踪、 实例分割还有图像描述等。
从编程角度来说, Faster R-CNN主要分为四部分(图中四个绿色框):
Dataset:数据,提供符合要求的数据格式(目前常用数据集是VOC和COCO)
Extractor: 利用CNN提取图片特征features(原始论文用的是ZF和VGG16,后来人们又用ResNet101)
RPN(Region Proposal Network): 负责提供候选区域rois(每张图给出大概2000个候选框)
RoIHead: 负责对rois分类和微调。对RPN找出的rois,判断它是否包含目标,并修正框的位置和座标
Faster R-CNN整体的流程可以分为三步:
提特征: 图
Faster R-CNN
最新推荐文章于 2023-04-19 23:52:35 发布