
文章带读
文章平均质量分 94
晨晨丶
好好学习,天天向上!
展开
-
Point Transformer V3: 更简单,更快,更强 详细解读
主题: "更简单,更快,更强大",v3版本在保持高性能的同时,着重优化了模型的简洁性和计算效率。核心改进:简化设计: v3版本对Point Transformer层进行了简化,减少了模型复杂度,提高了训练和推理速度。效率提升: 引入了新的优化算法和技术,如高效的点采样和特征提取方法,显著提升了处理速度。性能增强: 即便在简化模型结构的同时,v3版本通过更加精细的注意力机制和改进的网络架构,依然实现了在多个3D点云处理任务上的性能提升。原创 2024-03-22 08:47:49 · 5636 阅读 · 1 评论 -
Point Transformer V2: 分组向量注意力和基于分区的池化 超详细解析
首次提出了群体向量注意力继承了可学习权重编码和多头注意力机制,提出了一种基于分组权值编码层的分组向量注意力。同时引入额外的位置编码乘子来增加位置编码信息。此外,设计了新颖的轻量级的基于分区的池化方法,以实现更好的空间对其和更有效的采样。V2在V1的基础上,改进包括:分组向量注意力、位置编码乘数、基于分区的池化。原创 2024-03-21 08:33:39 · 2195 阅读 · 1 评论 -
(CVPR) Point Transformer - 详细解读
Point Transformer是一种深度学习模型,专门设计来处理点云数据。点云是3D空间中的一组点,通常用于表示物体的外形或空间的结构。这种数据格式在计算机视觉、自动驾驶汽车、机器人导航等领域非常重要。与其他数据类型(如图像)相比,点云的处理更为复杂,因为它是无序的,并且点与点之间的关系不像像素那样规则。原创 2024-03-19 08:30:00 · 4158 阅读 · 2 评论 -
空间变换网络 Spatial Transformer Networks-STN 详细解读
空间变换网络(STN)提出了一种神经网络的新颖子结构,能够显著增强网络对于几何变换的鲁棒性。STN通过在传统神经网络架构中嵌入一个可微分的空间变换模块,允许网络自动学习到对输入图像进行最优空间变换的能力。这一过程包含三个关键部分:定位网络(localization network)、网格生成器(grid generator)和采样器(sampler)。定位网络负责预测空间变换的参数;网格生成器根据这些参数创建一个对应变换后的输出图像的坐标网格;采样器则使用这个网格来产生变换后的输出图像。原创 2024-03-11 09:00:00 · 8255 阅读 · 2 评论 -
Point MLP 文章详解
Point MLP关于点云分析的新视角和方法。点云数据因其无规则和无序的结构而难以处理,传统方法主要依赖于探索复杂的局部几何特征提取器,如卷积图或注意力机制。然而,这些方法在推理阶段会产生不利的延迟,且近年来性能已趋于饱和。本文提出了一个纯粹的残差MLP网络,命名为PointMLP,它不依赖于“复杂”的局部几何特征提取器,但仍展现出极具竞争力的性能。原创 2024-03-18 08:30:00 · 1897 阅读 · 1 评论 -
Mamba详细解析
Mamba - 新颖的选择性状态空间模型(无需注意模块和MLP模块)- 通用的序列模型主干。允许状态空间的参数根据输入动态变换,模型根据当前的token选择性传播或遗忘信息。原创 2024-03-14 09:51:11 · 4241 阅读 · 1 评论 -
(CVPR) PointNet++ 深度层次特征学习度量空间中的点集 详细解读 - 附代码
PointNet++ 解决了两个问题:如何生成点集的划分(Partitioning),以及如何通过局部特征学习器(Local Feature Learner)抽象点集或局部特征。原创 2024-03-13 08:30:00 · 2554 阅读 · 1 评论 -
(CVPR) PointNet:用于3D分类和分割的点集深度学习 - 详细解读
PointNet是一种创新的深度学习架构,专为3D点云数据的分类和分割任务设计。它通过直接从原始点云数据学习,成功解决了3D数据处理中的关键挑战,包括数据的无序性和不同尺度的处理。PointNet的核心是利用对称函数构建的网络,能够从任意顺序的点集中学习到代表性的全局特征。此外,它引入了一个独特的“T-Net”(变换网络),确保对点云进行适当的空间变换,增强了模型对于几何变化的鲁棒性。原创 2024-03-10 10:51:48 · 2077 阅读 · 1 评论 -
注意力就是你所需的一切 - Transformer 最全详细解读
Transformer 模型自2017年由Vaswani等人在论文《Attention is All You Need》中提出以来,已经彻底改变了序列处理任务,尤其是在自然语言处理(NLP)领域。这个模型背后的核心思想是“自注意力机制”,它允许模型在处理序列数据时,同时关注序列中的所有位置,这与以往的循环神经网络(RNN)和卷积神经网络(CNN)形成对比,后者通常会按顺序或局部地处理信息。本文详细介绍了Transformer的全部流程,并对关键问题进行解读。原创 2024-03-08 12:43:36 · 2259 阅读 · 1 评论