离散时间序列的傅里叶变换和基本性质

 


目录

离散时间序列的傅里叶变换和基本性质

1、由连续时间序列的傅里叶变换:

2、DTFT的一些·常用性质

(1)时移性质

(2)频移性质

3、序列的对称性(这个比较重要)

(1)实部与虚部的奇偶性

(2)序列的表示

(3)序列FT的对称性



1、由连续时间序列的傅里叶变换:

F(w)=\int_{-\infty }^{+\infty }x(t)e^{-jwt}dt

x(t)=1/2\pi \int_{-\infty }^{+\infty }F(w)e^{jwt}dw

可以以此类推离散时间序列的傅里叶变换为

X(e^{jw})=\sum_{n=-\infty }^{+\infty }x(n)e^{-jwn}

x(n)=1/2\pi \int_{-\pi }^{+\pi }X(e^{jw})e^{jwn}dw

由于序列是离散的,所以求FT公式的时候用的累加;由于离散时间系统的FT是周期连续函数,且周期是2π(所以下面我们上下限选择的是+π),则可以直接用连续时间系统的FT公式带入。下面对离散时间系统的x(n)公式做一下验证:

\int_{-\pi }^{+\pi }X(e^{jw})e^{jw}dw=\int_{-\pi }^{+\pi }\sum_{m=-\infty }^{+\infty }x(m)e^{-jwm}e^{jwn}dw=\sum_{m=-\infty }^{+\infty }\int_{-\pi }^{+\pi }x(m)e^{-jw(m-n)}dw

\int_{-\pi }^{+\pi }x(m)e^{-jw(m-n)}dw=\int_{-\pi }^{+\pi }x(m)(\cos (n-m)+j\sin (n-m))dw

=\left\{\begin{matrix} 2\pi& &m=n & \\ 0& &m!=n & \end{matrix}\right.

\int_{-\pi }^{+\pi }x(m)e^{-jw(m-n)}dw=2\pi x(n)

至于这个2π周期,简要写一下:

X(e^{jw})=X(e^{j(w+2M\pi })           其中M是整数

下面是一个具体实例,附加matlab代码:

n=-10:10;
x=[(n>=0)&(n<10)];
k=-200:200;
w=(pi/200)*k;
X=x*(exp(-j*pi/200)).^(n'*k);
magX=abs(X);
angX=angle(X);
subplot(4,1,1);
stem(n,x);
xlabel('n');
ylabel('x'
  • 13
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值