数据分析项目 基于K-Means算法的广告聚类分析(3)----数据标准化:归一化Min-Max,0-1区间

本文介绍了在数据分析项目中,由于原始数据不同列的数量级差异,使得直接使用K-Means算法进行聚类分析变得困难。为解决这个问题,文章详细阐述了使用Python的sklearn库中的MinMaxScaler方法对数据进行标准化,将数据缩放到0-1区间,以确保K-Means算法的有效应用。通过展示标准化前后数据的变化,证明了数据标准化过程的成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、为什么要进行数据标准化

这是未标准化前的数据
这里取了原数据第2列到第7列的数据

日均UV   平均注册率   平均搜索量     访问深度   订单转化率  投放总时间
0        3.69  0.0071  0.0214   2.3071  0.0258     20
1      178.70  0.0040  0.0324   2.0489  0.0030     19
2       91.77  0.0022  0.0530   1.8771  0.0026
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值