每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个数的因子,把一个合数用质因子相乘的形式表现出来,叫做分解质因子。
分解质因子只针对合数。
合数:可以被1和本身之外的数整除
质数:只能被1和本身整除
Pollard Rho因数分解
求合数n的分解质因数
1先找到最小的质数k,如果k=n,那么就直接输出;如果k<n,那么k/n,en然后继续如此操作
传送门
资源限制
时间限制:1.0s 内存限制:512.0MB
问题描述
求出区间[a,b]中所有整数的质因数分解。
输入格式
输入两个整数a,b。
输出格式
每行输出一个数的分解,形如k=a1a2a3…(a1<=a2<=a3…,k也是从小到大的)(具体可看样例)
样例输入
3 10
样例输出
3=3
4=22
5=5
6=23
7=7
8=222
9=33
10=25
提示
先筛出所有素数,然后再分解。
数据规模和约定
2<=a<=b<=10000
提交代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+10;
int n,m;
int s[maxn];
int j;
bool isPrime(int x){
for(int i=2;i*i<=x;i++){
if(x%i==0)
return false;
}
return true;
}
void solve(int x){
memset(s,0,sizeof(s));
j=1;
while(x!=1){
for(int i=2;i<=x;i++){
if(x%i==0&&isPrime(i)){
s[j++]=i;
x/=i;
break;
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=n;i<=m;i++){
if(!isPrime(i)){
printf("%d=",i);
solve(i);
for(int k=1;k<=j-1;k++){
if(k==1)
printf("%d",s[k]);
else printf("*%d",s[k]);
}
cout<<endl;
}
else{
printf("%d=%d\n",i,i);
}
}
}