P2764 最小路径覆盖问题

前言

我做24题的第六题,输出路径还是有点糊涂

定义

给定有向图G=(V,E),设P是图G上若干点不相交的简单路径的集合,若每个点v属于V都存在于唯一一条P中的路径上,则P是G的一条路径覆盖。路径数量最少的路径覆盖称为最小路径覆盖。用MinPC(G)表示图G的最小路径覆盖数.
有向无环图的最小路径覆盖问题可转化为二分图的最大匹配问题。给定有向无环图G=(V,E),设V={1,2,…,n},将点i属于V拆成xi、yi两个点,若(i,j)属于E,则连一条无向边(xi,yi)。得到二分图G’.

定理

最小路径覆盖=顶点数-最大匹配

证明

考虑从G0=(V,空集)开始,往图中添加边的过程。初始时,每个点v属于V自成一条路径,有MinPC(G0)=n.希望每次加入的那条边能将两条简单的路径合为一条,所以这条边应起始于某条路径的终点,终止于另一条路径的起点,反复如此添加,直至无法操作为止。将添加过程中得到的图依次记为G1,G2…,问题就归结为最多能加入多少条这样的边。不难发现,G‘上的匹配M和上述方案是一一对应的:L中的某个未匹配点表示某条路径的终点,R中的某个未匹配点表示某条路径的起点,所以MinPC(Gi)=n-i,于是MinPC(G)=n-|M’|.

然后我写一下自己想的,有可能会有偏差。路径覆盖就是每一条路径都覆盖不重复的点。最小路径覆盖数就是问用最少的路径数量可以覆盖所有的顶点。一开始每一个顶点算一个路径,也就是MinPC(G0)=n,依次将可以连接的两个点连接起来,使一条路径尽可能多的覆盖点.一个二分图G,在G的一个子图M中, M的边集{E}中的任意两条边都不交汇于同一个结点,则称M是一个匹配。所以说寻找最小覆盖路径问题可以转化为二分图的最大匹配。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
#define inf 0x3f3f3f3f
using namespace std;
const int N=6e4+5;
const int maxn=1e3;
struct node
{
    int v,cap,to;
}s[N];
int pre[maxn+10];
int tag[maxn+10];
int cnt,head[N],dis[N];
int a,t;
int n,m;
void add(int u,int v,int cap)
{
    s[cnt].v=v;
    s[cnt].cap=cap;
    s[cnt].to=head[u];
    head[u]=cnt++;
    s[cnt].v=u;
    s[cnt].cap=0;
    s[cnt].to=head[v];
    head[v]=cnt++;
}
bool bfs()
{
    queue<int>q;
    memset(dis,0,sizeof(dis));
    dis[a]=1;
    q.push(a);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int e=head[u];~e;e=s[e].to)
        {
            int v=s[e].v,cap=s[e].cap;
            if(!dis[v]&&cap>0)
            {
                dis[v]=dis[u]+1;
                q.push(v);
            }
        }
    }
    return dis[t]!=0;
}
int dfs(int u,int flow)
{
    int mm;
    if(u==t){
    	return flow;
	}
    for(int e=head[u];~e;e=s[e].to)
    {
        int v=s[e].v,cap=s[e].cap;
        if(cap>0&&dis[v]==dis[u]+1&&(mm=dfs(v,min(cap,flow))))
        {
			pre[u]=v;
			if(u!=a) tag[v-n]=1;
            s[e].cap-=mm;
            s[e^1].cap+=mm;
            return mm;
        }
    }
    dis[u]=-1;
    return 0;
}
int dinic()
{
    int ans=0,tf;
    while(bfs())
    {
        while(tf=dfs(a,inf))
        {
            ans+=tf;
        }
    }
    for(int i=1;i<=n;i++)
    {
    	bool ok=false;
    	if(!tag[i])//起始点 
    	{
    		ok=true;
    		int now=i;
    		printf("%d ",now);
    		while(pre[now]&&pre[now]!=t)
    		{
    			printf("%d ",pre[now]-n);
    			now=pre[now]-n;
			}
		}
		if(ok)
		cout<<endl;
	}
    return ans;
}
void init()///3?ê??ˉ
{
    cnt=0;
    memset(head,-1,sizeof(head));
}
int main()
{
    init();
   	scanf("%d%d",&n,&m);
   	a=0;t=2*n+1;
   	for(int i=1;i<=m;i++){
   		int x,y;scanf("%d%d",&x,&y);
   		add(x,y+n,1);
	} 
	for(int i=1;i<=n;i++)
	{
		add(a,i,1);add(n+i,t,1);
	}
	int num=dinic();
	printf("%d\n",n-num);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值