上位机、下位机、单片机的关系

最近要做一个串口通信的系统,那必然会联系到上位机和下位机概念,那单片机又是什么呢?我们一起来看一下!

一、上位机

上位机指的是可以直接发送操作指令的计算机或者单片机,一般提供用户操作交互界面并向用户展示反馈数据。

  • 典型设备:电脑、平板、手机、面板、触摸屏

上位机软件是用于完成上位机操作交互的软件

二、下位机

下位机指的是与机器相连接的计算机或者单片机,一般用于接收和反馈上位机的指令,并根据指令控制机器执行动作以及从机器传感器读取数据

典型设备:PLC、stm32、51、FPGA、ARM等各类可编程芯片。

三、上位机和下位机的关系
  • 上位机给下位机发送控制命令,下位机接收到此命令并执行相应的动作;
  • 上位机给下位机发送状态获取命令,下位机接收到此命令后调用传感器测量,然后转化为数字信息反馈给上位机;
  • 下位机主动发送状态信息或者报警信息给上位机。

为了实现以上过程,上位机和下位机都需要独立进行编程,都需要专门的开发人员在各自的平台上编写代码。

四、其他概念
  1. 通信协议:上位机和下位机之间的通信协议有很多,只要完成通信的协议都可以在上位机和下位机之间,比如USB,蓝牙,UDP/TCP

  2. 通信API:在通信协议的基础上,具体发送什么数据即发送什么指令,还需要规定各个功能对应的指令,每个功能对应的指令叫做API。

只要通信协议可以建立,上位机软件可以是任意开发语言和任意平台,下位机也可以是热议类型的单片机。

开发上位机软件与其他软件的最大区别在于“上位机软件要连接设备并与之通信”

### 使用RCNNYOLOv3实现目标检测 #### RCNN系列方法概述 RCNN及其改进版本(Fast R-CNN, Faster R-CNN)通过引入区域建议制来定位图像中的对象候选框,随后利用卷积神经网络提取特征并分类这些候选框内的内容。为了提高效率,Faster R-CNN移除了传统的全连接层结构,转而应用完全卷积网络(FCN),从而减少了模型参数数量以及降低了计算复杂度[^1]。 对于实际操作而言,在准备环境之前需安装必要的库如PyTorch等器学习框架,并下载预训练好的权重文件用于微调特定任务下的表现效果。接着按照官方文档指导设置好数据集路径、类别标签映射关系等内容之后即可运行评估脚本验证模型性能: ```bash (base) ng@ng-Z390:/home/lrs/demo/fastrcnn$ python ./coco/coco_eval.py ../results/val_results.json --ann ../mini_airplane/annotations/val.json ``` 此命令展示了如何加载验证结果JSON文件与标注信息进行对比分析的过程[^3]。 #### YOLOv3简介及其实现过程 不同于两阶段的RCNN家族成员,YOLOv3属于单阶段目标检测器之一,其特点是直接从整张图片上预测边界框的位置所属类别的概率分布情况而不经过显式的提议步骤。该架构采用了基于网格的设计思路,即把输入空间划分成多个单元格,每个负责预测固定数目的锚点位置;同时支持多尺度特征融合技术以增强小物体捕捉能力。 当考虑具体应用场景比如工业缺陷监测时,YOLOv5已被证明可以很好地适应此类需求——即使是在未经充分优化的情况下也能取得不错的查准率召回率成绩。值得注意的是,虽然Mask R-CNN同样适用于相似的任务领域,但在某些情况下可能由于实现难度较大而导致难以部署成功[^2]。 下面给出一段简单的Python代码片段用来展示怎样快速启动一个基于Darknet框架构建起来的YOLOv3实例化程序: ```python import cv2 as cv from darknet import DarkNetModel def detect_objects(image_path): net = DarkNetModel('cfg/yolov3.cfg', 'weights/yolov3.weights') img = cv.imread(image_path) detections = net.detect(img) for detection in detections: label, confidence, bbox = detection print(f'Label: {label}, Confidence: {confidence:.2f}') detect_objects('path/to/image.jpg') ``` 这段伪代码假设读者已经具备一定的编程基础并且熟悉OpenCV库的基本用法。此外还需注意配置文件`*.cfg`权重文件`*.weights`应当放置于适当目录下以便正确加载模型资源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值